Parsing

Introduction

Laura Kallmeyer

Heinrich-Heine-Universitit Diisseldorf

Winter 2017/18

HEINRICH HEINE

UNIVERSITAT DUSSELDORF

21

Table of contents

@ Introduction

© Languages

© Grammars

e Grammar Formalisms
@ Parsing and Automata

@ The Chomsky Hierarchy

2/21

Introduction

Parsing means performing an automatic syntactic analysis.
Two types of syntactic structures are used for natural languages:

@ Constituent structure

@ Dependency structure

See for instance the Stanford Parser, that gives both types of
structures:
http://nlp.stanford.edu:8080/parser/index. jsp

Introduction

Constituent structure

m every word is a constituent

m several constituents can form a new constituent
m each constituent has a syntactic category

m the structure is usually tree-shaped

m oftentimes only continuous constituents

S

/\
/\/\

DT NN VBD

\\\A

the man saw DT NN

the girl

Introduction

Dependency structure

m every word is a node in the structure

m there is one additional node, root

m words are linked via directed labeled edges (dependencies)
m the structure is usually tree-shaped

m oftentimes only projective dependencies

root

dobj

det
NN .
(0] (0] (0] o o o
root the man saw the girl

Constituency parsing is mostly grammar-based while dependency
parsing is mostly grammar-less.

This course is concerned with constituency parsing.

Languages (1)

Examples of languages one might want to parse:
m natural languages such as, e.g., German, English, French, ...

m programming languages such as, e.g., the set of all correct
Java programs, ...

= “biological” languages such as, e.g., the set of possible DNA
sequences in a certain environment, ...

m formal languages such as, e.g., the language containing all
sequences ab, aabb, aaabbb, aaaabbbb,

Languages (2)

Alphabet, languages

m An alphabet is a nonempty finite set X.

m Astring x;...x, withn > 1and x; € X for 1 < i < nis called
a nonempty word on the alphabet X. X is defined as the set
of all nonempty words on X.

m A new elemente ¢ X is added: X* := X' U {€}. For each
w € X* concatenation of w and ¢ is defined as follows: we :=
ew = w. ¢ is called the empty word, and each w € X" is
called a word on X.

m A set L is called a language iff there is an alphabet X such that
LCX*

Grammars (1)

Languages are described by grammars. We will concentrate on
generative grammars (sometimes also called rewriting
grammars).

Idea: you have

m a start symbol (often S)

m and productions (rewriting rules) that tell you how to replace
symbols with other symbols. (e.g., S — NP VP)

Grammars (2)

Grammar Gtelescope

Productions:

S—-NPVP NP—-+DN N-—=>NPP
VP - VPPP VP —+ VNP PP—PNP
N — man N — girl N — telescope P — with
D — the NP — John NP — Mary V — saw

In each derivation step o« = +, the lefthand side symbol of a
production is replaced with the righthand side.

Derivation in Gyejescope

S = NP VP = D N VP = the N VP = the girl VP = the girl VNP
= the girl saw NP =- the girl saw John

Grammars (3)

The language generated by a grammar is the set of terminal strings
one can derive from the start symbol.

Language of Gtelescope

Sentences one can generate with Gielescope:
(1) John saw Mary

(2) John saw the girl

(3) the man with the telescope saw John
(

)John saw the girl with the telescope

10/21

Grammar Formalisms (1)

A grammar formalism defines the form of rules and combination
operations allowed in a grammar.

Type 0 grammar

A type 0 grammar (or unrestricted grammar) G is a tuple

(N, T,P,S) with
m N and T disjoint alphabets, the nonterminals and terminals,
m S € N the start symbol, and

m P a set of productions of the form o« — with
ae(NUT)T,Be (NUT)*

Grammar Formalisms (2)

Derivation

Let G = (N, T,P,S) be a type 0 grammar. The (string) language L(G)
of G is the set {w € T* | S = w} where

m for w,w € (NUT)*: w= v iff there isa o — 8 € P and there
are v, u € (N U T)* such that w = vau and w' = vfu.

m = is the reflexive transitive closure of =-:
m w= wforallwe (NUT)*, and
m forall w,w' € (NUT)*: w=> w iff there is a v such that w = v
and v'S' w.
m forall w,w € (NUT)*: w= w iff thereisa i € N such that

g /
W= w.

A language is called a type 0 language iff it is generated by a type 0
grammar.

Grammar Formalisms (3)

Type 1 grammar

A type 0 grammar is called context-sensitive (or of type 1) if for
all productions a — f3, || < |S] holds. The only exception is S — ¢
which is allowed if S does not appear in any righthand side.

Example of a type 1 grammar
N={S,C}, T={ab,c}

Productions:
S—abc S — aabCbc abC — aabCbC

Cb —bC Cc—cc

This grammar generates {a"b"c" | n > 1}.

Grammar Formalisms (4)

Type 2 grammar

A type 0 grammar is called context-free (or of type 2) if for all
productions @ — 3, « € N.

Example of a type 2 grammar
N={S, T}, T={a b, c, d}

Productions:
S—aSh S—aTb T—ccTdd T—¢

This grammar generates the language {a"c*™d*™b" |n > 1, m > 0}.

Grammar Formalisms (5)

Type 3 grammar

A type 0 grammar is called regular (or of type 3) if for all produc-
tionsa — B, € Nand 3 € T* or § = /X with 8/ € T*, X € N.

Example of a type 3 grammar
N={S,A,B,C},T={ab,c}

Productions:
S—+aS S—B S—C B—bB B—b C-—cc

This grammar generates the language denotated by (aa)*(b™|cc).

The type 1/2/3 languages are the languages generated by the
corresponding grammars.

Parsing and Automata (1)

A parser is a device that accepts a word w and a grammar G as input
and that

@ decides whether w is in the language generated by the gram-
mar and

@ if so, it provides a syntactic analysis for w or, if w is ambiguous,
a set of analyses, oftentimes represented in a compact way as a
derivation forest.

A device that does only the first part of the task is called a
recognizer.

Parsing and Automata (2)

Example for parsing:

Input: “the man saw the girl”.
Output: S

N

the man saw D N

the girl

Input: “the man saw saw the girl”. Output: no.

Parsing and Automata (3)

A parser for grammars such as Giejescope cOuld for example work as
follows:
@ Start from the terminal symbols.

@ Apply productions in reverse order thereby combining already
recognized parts into new parts.

© Success if an S can be found that spans the whole w.

Parsing and Automata (4)

Automata are devices that accept a language. They are recognizers.
An automaton has

m a set of states, containing an initial state and final states,

m a tape with the input string, and

m a finite control.
The automaton starts in the initial state. It reads the input string on

the tape while changing states. If it ends up in a final state after
having consumed the whole input, the word is accepted.

Oftentimes for a given grammar, an automaton can be constructed
that accepts the string language of the grammar.

The Chomsky Hierarchy

The hierarchy of the type 0, 1, 2 and 3 languages is called the
Chomsky Hierarchy.

Chomsky Hierarchy
class ‘ grammar ‘ automaton ‘ others
type 3 | regular grammar FSA reg. expr.
type 2 | CFG PDA
type 1 | CSG LBA

type 0 | unrestricted grammars | Turing machine

In this course, we are concerned with CFGs.

20/21

Grune, D. and Jacobs, C. (2008). Parsing Techniques. A Practical Guide.
Monographs in Computer Science. Springer. Second Edition.
A textbook covering almost all the algorithms treated in this course.

Hopcroft, J. E. and Ullman, J. D. (1979). Introduction to Automata Theory,
Languages and Computation. Addison Wesley.
Original edition of one of the best textbooks on formal language and
automata theory.

Hopcroft, J. E. and Ullman, J. D. (1994). Einfithrung in die Automatentheorie,
Formale Sprachen und Komplexititstheorie. Addison Wesley, 3. edition.
Its German translation.

Kallmeyer, L. (2010). Parsing Beyond Context-Free Grammars. Cognitive
Technologies. Springer, Heidelberg.
Chapter 3 introduces to parsing as deduction and discusses some
properties of parsing algorithms.

	Introduction
	Languages
	Grammars
	Grammar Formalisms
	Parsing and Automata
	The Chomsky Hierarchy

