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Introduction

Parsing means performing an automatic syntactic analysis.
Two types of syntactic structures are used for natural languages:

@ Constituent structure

@ Dependency structure

See for instance the Stanford Parser, that gives both types of
structures:
http://nlp.stanford.edu:8080/parser/index. jsp



Introduction

Constituent structure

m every word is a constituent

m several constituents can form a new constituent
m each constituent has a syntactic category

m the structure is usually tree-shaped

m oftentimes only continuous constituents
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Introduction

Dependency structure

m every word is a node in the structure

m there is one additional node, root

m words are linked via directed labeled edges (dependencies)
m the structure is usually tree-shaped

m oftentimes only projective dependencies
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Constituency parsing is mostly grammar-based while dependency
parsing is mostly grammar-less.

This course is concerned with constituency parsing.



Languages (1)

Examples of languages one might want to parse:
m natural languages such as, e.g., German, English, French, ...

m programming languages such as, e.g., the set of all correct
Java programs, ...

= “biological” languages such as, e.g., the set of possible DNA
sequences in a certain environment, ...

m formal languages such as, e.g., the language containing all
sequences ab, aabb, aaabbb, aaaabbbb, . . ..



Languages (2)

Alphabet, languages

m An alphabet is a nonempty finite set X.

m Astring x;...x, withn > 1and x; € X for 1 < i < nis called
a nonempty word on the alphabet X. X is defined as the set
of all nonempty words on X.

m A new elemente ¢ X is added: X* := X' U {€}. For each
w € X* concatenation of w and ¢ is defined as follows: we :=
ew = w. ¢ is called the empty word, and each w € X" is
called a word on X.

m A set L is called a language iff there is an alphabet X such that
LCX*



Grammars (1)

Languages are described by grammars. We will concentrate on
generative grammars (sometimes also called rewriting
grammars).

Idea: you have

m a start symbol (often S)

m and productions (rewriting rules) that tell you how to replace
symbols with other symbols. (e.g., S — NP VP)



Grammars (2)

Grammar Gtelescope

Productions:

S—-NPVP NP—-+DN N-—=>NPP
VP - VPPP VP —+ VNP PP—PNP
N — man N — girl N — telescope P — with
D — the NP — John NP — Mary V — saw

In each derivation step o« = +, the lefthand side symbol of a
production is replaced with the righthand side.

Derivation in Gyejescope

S = NP VP = D N VP = the N VP = the girl VP = the girl VNP
= the girl saw NP =- the girl saw John



Grammars (3)

The language generated by a grammar is the set of terminal strings
one can derive from the start symbol.

Language of Gtelescope

Sentences one can generate with Gielescope:
(1) John saw Mary

(2) John saw the girl

(3) the man with the telescope saw John
(

)John saw the girl with the telescope
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Grammar Formalisms (1)

A grammar formalism defines the form of rules and combination
operations allowed in a grammar.

Type 0 grammar

A type 0 grammar (or unrestricted grammar) G is a tuple

(N, T,P,S) with
m N and T disjoint alphabets, the nonterminals and terminals,
m S € N the start symbol, and

m P a set of productions of the form o« —  with
ae(NUT)T,Be (NUT)*



Grammar Formalisms (2)

Derivation

Let G = (N, T,P,S) be a type 0 grammar. The (string) language L(G)
of G is the set {w € T* | S = w} where

m for w,w € (NUT)*: w= v iff there isa o — 8 € P and there
are v, u € (N U T)* such that w = vau and w' = vfu.

m = is the reflexive transitive closure of =-:
m w= wforallwe (NUT)*, and
m forall w,w' € (NUT)*: w=> w iff there is a v such that w = v
and v'S' w.
m forall w,w € (NUT)*: w= w iff thereisa i € N such that

g /
W= w.

A language is called a type 0 language iff it is generated by a type 0
grammar.



Grammar Formalisms (3)

Type 1 grammar

A type 0 grammar is called context-sensitive (or of type 1) if for
all productions a — f3, || < |S] holds. The only exception is S — ¢
which is allowed if S does not appear in any righthand side.

Example of a type 1 grammar
N={S,C}, T={ab,c}

Productions:
S—abc S — aabCbc abC — aabCbC

Cb —bC Cc—cc

This grammar generates {a"b"c" | n > 1}.



Grammar Formalisms (4)

Type 2 grammar

A type 0 grammar is called context-free (or of type 2) if for all
productions @ — 3, « € N.

Example of a type 2 grammar
N={S, T}, T={a b, c, d}

Productions:
S—aSh S—aTb T—ccTdd T—¢

This grammar generates the language {a"c*™d*™b" |n > 1, m > 0}.



Grammar Formalisms (5)

Type 3 grammar

A type 0 grammar is called regular (or of type 3) if for all produc-
tionsa — B, € Nand 3 € T* or § = /X with 8/ € T*, X € N.

Example of a type 3 grammar
N={S,A,B,C},T={ab,c}

Productions:
S—+aS S—B S—C B—bB B—b C-—cc

This grammar generates the language denotated by (aa)*(b™|cc).

The type 1/2/3 languages are the languages generated by the
corresponding grammars.



Parsing and Automata (1)

A parser is a device that accepts a word w and a grammar G as input
and that

@ decides whether w is in the language generated by the gram-
mar and

@ if so, it provides a syntactic analysis for w or, if w is ambiguous,
a set of analyses, oftentimes represented in a compact way as a
derivation forest.

A device that does only the first part of the task is called a
recognizer.



Parsing and Automata (2)

Example for parsing:

Input: “the man saw the girl”.
Output: S

N

the man saw D N

the girl

Input: “the man saw saw the girl”. Output: no.



Parsing and Automata (3)

A parser for grammars such as Giejescope cOuld for example work as
follows:
@ Start from the terminal symbols.

@ Apply productions in reverse order thereby combining already
recognized parts into new parts.

© Success if an S can be found that spans the whole w.



Parsing and Automata (4)

Automata are devices that accept a language. They are recognizers.
An automaton has

m a set of states, containing an initial state and final states,

m a tape with the input string, and

m a finite control.
The automaton starts in the initial state. It reads the input string on

the tape while changing states. If it ends up in a final state after
having consumed the whole input, the word is accepted.

Oftentimes for a given grammar, an automaton can be constructed
that accepts the string language of the grammar.



The Chomsky Hierarchy

The hierarchy of the type 0, 1, 2 and 3 languages is called the
Chomsky Hierarchy.

Chomsky Hierarchy
class ‘ grammar ‘ automaton ‘ others
type 3 | regular grammar FSA reg. expr.
type 2 | CFG PDA
type 1 | CSG LBA

type 0 | unrestricted grammars | Turing machine

In this course, we are concerned with CFGs.
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