Parsing Introduction

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Winter 2017/18

HEINRICH HEINE

Table of contents

- Introduction
- 2 Languages
- Grammars
- 4 Grammar Formalisms
- Parsing and Automata
- **6** The Chomsky Hierarchy

Introduction

Parsing means performing an automatic syntactic analysis.

Two types of syntactic structures are used for natural languages:

- Constituent structure
- Dependency structure

See for instance the Stanford Parser, that gives both types of structures:

http://nlp.stanford.edu:8080/parser/index.jsp

Introduction

Constituent structure

- every word is a constituent
- several constituents can form a new constituent
- each constituent has a syntactic category
- the structure is usually tree-shaped
- oftentimes only continuous constituents

Introduction

Dependency structure

- every word is a node in the structure
- there is one additional node, *root*
- words are linked via directed labeled edges (dependencies)
- the structure is usually tree-shaped
- oftentimes only projective dependencies

Constituency parsing is mostly grammar-based while dependency parsing is mostly grammar-less.

This course is concerned with constituency parsing.

Languages (1)

Examples of languages one might want to parse:

Languages

- natural languages such as, e.g., German, English, French, ...
- **programming languages** such as, e.g., the set of all correct Java programs, ...
- "biological" languages such as, e.g., the set of possible DNA sequences in a certain environment, ...
- **formal languages** such as, e.g., the language containing all sequences *ab*, *aaabb*, *aaaabbb*, *aaaabbbb*,

Languages (2)

Alphabet, languages

- An **alphabet** is a nonempty finite set *X*.
- A string $x_1 ... x_n$ with $n \ge 1$ and $x_i \in X$ for $1 \le i \le n$ is called a **nonempty word** on the alphabet X. X^+ is defined as the set of all nonempty words on X.
- A new element $\varepsilon \notin X^+$ is added: $X^* := X^+ \cup \{\varepsilon\}$. For each $w \in X^*$ concatenation of w and ε is defined as follows: $w\varepsilon := \varepsilon w := w$. ε is called the **empty word**, and each $w \in X^*$ is called a word on X.
- A set *L* is called a **language** iff there is an alphabet *X* such that $L \subset X^*$.

Grammars (1)

Languages are described by grammars. We will concentrate on **generative grammars** (sometimes also called **rewriting grammars**).

Idea: you have

- a start symbol (often S)
- \blacksquare and productions (rewriting rules) that tell you how to replace symbols with other symbols. (e.g., S \to NP VP)

Grammars (2)

Grammar $G_{telescope}$

Productions:

```
\begin{split} S \rightarrow NP \ VP & NP \rightarrow D \ N & N \rightarrow N \ PP \\ VP \rightarrow VP \ PP & VP \rightarrow V \ NP & PP \rightarrow P \ NP \\ N \rightarrow man & N \rightarrow girl & N \rightarrow telescope & P \rightarrow with \\ D \rightarrow the & NP \rightarrow John & NP \rightarrow Mary & V \rightarrow saw \end{split}
```

In each derivation step $\alpha \Rightarrow \gamma$, the lefthand side symbol of a production is replaced with the righthand side.

Derivation in $G_{telescope}$

 $S\Rightarrow NP\ VP\Rightarrow D\ N\ VP\Rightarrow the\ N\ VP\Rightarrow the\ girl\ VP\Rightarrow the\ girl\ VP\Rightarrow the\ girl\ VP\Rightarrow the\ girl\ Saw\ NP\Rightarrow the\ girl\ Saw\ John$

Grammars (3)

The language generated by a grammar is the set of terminal strings one can derive from the start symbol.

Language of G_{telescope}

Sentences one can generate with $G_{telescope}$:

- (1) John saw Mary
- (2) John saw the girl
- (3) the man with the telescope saw John
- (4) John saw the girl with the telescope

...

Grammar Formalisms (1)

A **grammar formalism** defines the form of rules and combination operations allowed in a grammar.

Type 0 grammar

A **type 0 grammar** (or unrestricted grammar) G is a tuple $\langle N, T, P, S \rangle$ with

- *N* and *T* disjoint alphabets, the nonterminals and terminals,
- $S \in N$ the start symbol, and
- *P* a set of productions of the form $\alpha \to \beta$ with $\alpha \in (N \cup T)^+, \beta \in (N \cup T)^*$.

Grammar Formalisms (2)

Derivation

Let $G = \langle N, T, P, S \rangle$ be a type 0 grammar. The (*string*) language L(G) of G is the set $\{w \in T^* \mid S \stackrel{*}{\Rightarrow} w\}$ where

- for $w, w' \in (N \cup T)^*$: $w \Rightarrow w'$ iff there is a $\alpha \rightarrow \beta \in P$ and there are $v, u \in (N \cup T)^*$ such that $w = v\alpha u$ and $w' = v\beta u$.
- $\stackrel{*}{\Rightarrow}$ is the reflexive transitive closure of \Rightarrow :
 - $w \stackrel{0}{\Rightarrow} w$ for all $w \in (N \cup T)^*$, and
 - for all $w, w' \in (N \cup T)^*$: $w \stackrel{n}{\Rightarrow} w'$ iff there is a v such that $w \Rightarrow v$ and $v \stackrel{n-1}{\Rightarrow} w'$.
 - for all $w, w' \in (N \cup T)^*$: $w \stackrel{*}{\Rightarrow} w'$ iff there is a $i \in \mathbb{N}$ such that $w \stackrel{i}{\Rightarrow} w'$.

A language is called a **type 0** language iff it is generated by a type 0 grammar.

Grammar Formalisms (3)

Type 1 grammar

A type 0 grammar is called **context-sensitive** (or of **type 1**) if for all productions $\alpha \to \beta$, $|\alpha| \le |\beta|$ holds. The only exception is $S \to \varepsilon$ which is allowed if S does not appear in any righthand side.

Example of a type 1 grammar

$$N = \{S, C\}, T = \{a, b, c\}$$

Productions:

$$S \to abc \qquad S \to aabCbc \quad abC \to aabCbC$$

$$Cb \rightarrow bC$$
 $Cc \rightarrow cc$

This grammar generates $\{a^nb^nc^n \mid n \ge 1\}$.

Grammar Formalisms (4)

Type 2 grammar

A type 0 grammar is called **context-free** (or of **type 2**) if for all productions $\alpha \to \beta$, $\alpha \in N$.

Example of a type 2 grammar

$$N = \{S, T\}, T = \{a, b, c, d\}$$

Productions:

$$S \rightarrow aSb \quad S \rightarrow aTb \quad T \rightarrow ccTdd \quad T \rightarrow \varepsilon$$

This grammar generates the language $\{a^nc^{2m}d^{2m}b^n \mid n \geq 1, m \geq 0\}$.

Grammar Formalisms (5)

Type 3 grammar

A type 0 grammar is called **regular** (or of **type 3**) if for all productions $\alpha \to \beta$, $\alpha \in N$ and $\beta \in T^*$ or $\beta = \beta' X$ with $\beta' \in T^*$, $X \in N$.

Example of a type 3 grammar

$$N = \{S, A, B, C\}, T = \{a, b, c\}$$

Productions:

$$S \rightarrow aaS \quad S \rightarrow B \quad S \rightarrow C \quad B \rightarrow bB \quad B \rightarrow b \quad C \rightarrow cc$$

This grammar generates the language denotated by $(aa)^*(b^+|cc)$.

The type 1/2/3 languages are the languages generated by the corresponding grammars.

Parsing and Automata (1)

A **parser** is a device that accepts a word *w* and a grammar *G* as input and that

- decides whether *w* is in the language generated by the grammar and
- if so, it provides a syntactic analysis for w or, if w is ambiguous, a set of analyses, oftentimes represented in a compact way as a **derivation forest**.

A device that does only the first part of the task is called a **recognizer**.

Parsing and Automata (2)

Example for parsing:

Input: "the man saw the girl".

Output:

Input: "the man saw saw the girl". Output: no.

Parsing and Automata (3)

A parser for grammars such as $G_{telescope}$ could for example work as follows:

- Start from the terminal symbols.
- Apply productions in reverse order thereby combining already recognized parts into new parts.
- 3 Success if an S can be found that spans the whole w.

Parsing and Automata (4)

Automata are devices that accept a language. They are recognizers. An automaton has

- a set of states, containing an initial state and final states,
- a tape with the input string, and
- a finite control.

The automaton starts in the initial state. It reads the input string on the tape while changing states. If it ends up in a final state after having consumed the whole input, the word is accepted.

Oftentimes for a given grammar, an automaton can be constructed that accepts the string language of the grammar.

The Chomsky Hierarchy

The hierarchy of the type 0, 1, 2 and 3 languages is called the **Chomsky Hierarchy**.

Chomsky Hierarchy			
class	grammar	automaton	others
type 3	regular grammar	FSA	reg. expr.
type 3 type 2 type 1	CFG	PDA	
type 1	CSG	LBA	
type 0	unrestricted grammars	Turing machine	

In this course, we are concerned with CFGs.

- Grune, D. and Jacobs, C. (2008). *Parsing Techniques. A Practical Guide*. Monographs in Computer Science. Springer. Second Edition. A textbook covering almost all the algorithms treated in this course.
- Hopcroft, J. E. and Ullman, J. D. (1979). *Introduction to Automata Theory, Languages and Computation*. Addison Wesley.Original edition of one of the best textbooks on formal language and automata theory.
- Hopcroft, J. E. and Ullman, J. D. (1994). *Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie*. Addison Wesley, 3. edition. Its German translation.
- Kallmeyer, L. (2010). Parsing Beyond Context-Free Grammars. Cognitive Technologies. Springer, Heidelberg.
 Chapter 3 introduces to parsing as deduction and discusses some properties of parsing algorithms.