Parsing Parsing as deduction

#### Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

#### Winter 2017/18

Gainvif finn NRICH HEINE UNIVERSITÄT DÜSSELDORI

# Table of contents

#### 1 Motivation

- 2 Parsing Schemata
- 3 Example: Unger
- 4 Example: Top-Down
- **5** Implementation Issues
- 6 Complexity
- Conclusion
- 8 Bibliography

- Algorithmic descriptions of parsing algorithms (e.g., in pseudocode) introduce *data structures* and *control structures*
- The parsing strategy of the algorithm does not depend on them

- Algorithmic descriptions of parsing algorithms (e.g., in pseudocode) introduce *data structures* and *control structures*
- The parsing strategy of the algorithm does not depend on them

Question: Can we separate the parsing strategy from the control strategy?

Answer: Parsing as Deduction Shieber et al. (1995); Sikkel (1997)

Concentration on parsing strategy

- Concentration on parsing strategy
- Facilitation of proofs (e.g., soundness and completeness of an algorithm):

- Concentration on parsing strategy
- Facilitation of proofs (e.g., soundness and completeness of an algorithm):

**Soundness**: If the algorithm yields *true* for w, then  $w \in L(G)$ . **Completeness**: If  $w \in L(G)$ , then the algo yields *true* for w.

- Concentration on parsing strategy
- Facilitation of proofs (e.g., soundness and completeness of an algorithm):

**Soundness**: If the algorithm yields *true* for w, then  $w \in L(G)$ . **Completeness**: If  $w \in L(G)$ , then the algo yields *true* for w.

(Time) Complexity of an algorithm sometimes easier to determine

#### Parsing schemata (1)

How characterize a single parsing step?

During parsing, the parser produces trees (*parse trees*, partial results) and tries to combine them to new trees, until some tree rooted by the goal category (e.g. *S*) comes out

During parsing, the parser produces trees (*parse trees*, partial results) and tries to combine them to new trees, until some tree rooted by the goal category (e.g. *S*) comes out

• We can characterize parse trees

During parsing, the parser produces trees (*parse trees*, partial results) and tries to combine them to new trees, until some tree rooted by the goal category (e.g. *S*) comes out

- We can characterize parse trees
- We can characterize how new parse trees can be deduced from existing ones

During parsing, the parser produces trees (*parse trees*, partial results) and tries to combine them to new trees, until some tree rooted by the goal category (e.g. *S*) comes out

- We can characterize parse trees
- We can characterize how new parse trees can be deduced from existing ones
- We can fix a goal: We want to deduce a tree with root *S* that spans the entire input sentence

• We characterize a parse tree rooted by some nonterminal *X* by the terminals *X* spans.

- We characterize a parse tree rooted by some nonterminal *X* by the terminals *X* spans.
- We write parse trees/partial parse results in the form of *items*:
  [X, i, j], meaning that X derives the terminals between position *i* and position *j*

- We characterize a parse tree rooted by some nonterminal *X* by the terminals *X* spans.
- We write parse trees/partial parse results in the form of *items*: [*X*, *i*, *j*], meaning that *X* derives the terminals between position *i* and position *j*



•*S* signifies that *S* has been predicted.

- •*S* signifies that *S* has been predicted.

- •*S* signifies that *S* has been predicted.
- A → A<sub>1</sub>...A<sub>i</sub> A<sub>i+1</sub>...A<sub>n</sub> signifies that the rhs of the production A → A<sub>1</sub>...A<sub>n</sub> has been recognized up to A<sub>i</sub> while the part from A<sub>i+1</sub> to A<sub>n</sub> has been predicted.

Parsing Schemata understand parsing as a deductive process.

- Parsing Schemata understand parsing as a deductive process.
- Deduction of new items from existing ones can be described using inference rules.

- Parsing Schemata understand parsing as a deductive process.
- Deduction of new items from existing ones can be described using inference rules.
- General form:

antecedent consequent side conditions

Antecedent, consequent: (lists of) items.

- Parsing Schemata understand parsing as a deductive process.
- Deduction of new items from existing ones can be described using inference rules.
- General form:

antecedent consequent side conditions

- Antecedent, consequent: (lists of) items.
- Application: if antecedent can be deduced and side conditions hold, then the consequent can be deduced as well.

• A parsing schema consists of

A parsing schema consists of

Observation Deduction rules

- A parsing schema consists of
  - Output Deduction rules
  - An axiom (or axioms): can be written as a deduction rule with empty antecedent

A parsing schema consists of

- O Deduction rules
- An axiom (or axioms): can be written as a deduction rule with empty antecedent
- A goal item

A parsing schema consists of

- Oeduction rules
- An axiom (or axioms): can be written as a deduction rule with empty antecedent
- A goal item
- The parsing algorithm succeeds if, for a given input, it is possible to deduce the goal item.

Assume CFG without  $\varepsilon$ -productions and without loops  $A \stackrel{+}{\Rightarrow} A$ .

function unger(w,X): out := false; if w = X, then out := true Scan else for all  $X \to X_1 \dots X_k$ : for all  $x_1, \dots, x_k \in T^+$  with  $w = x_1 \dots x_k$ : Predict if  $\bigwedge_{i=1}^k$  unger( $x_i, X_i$ ) Complete then out := true; return out

Initial call: unger(w, S) Axiom

An Unger item needs to caracterize

#### An Unger item needs to caracterize

A nonterminal category or a terminal symbol

- An Unger item needs to caracterize
  - A nonterminal category or a terminal symbol
  - Its yield in the input string

- An Unger item needs to caracterize
  - A nonterminal category or a terminal symbol
  - Its yield in the input string
  - Whether the item is predicted or recognized

- An Unger item needs to caracterize
  - A nonterminal category or a terminal symbol
  - Its yield in the input string
  - Whether the item is predicted or recognized
- Item form:

 $[\bullet X, i, j]$  or  $[X \bullet, i, j]$  with  $X \in N \cup T, i, j \in \mathbb{N}, i \leq j$ .

• We start with the prediction that *S* yields the whole input (question  $S \stackrel{*}{\Rightarrow} w$ , |w| = n?).

Axiom: 
$$\underline{[\bullet S, 0, n]}$$
  $|w| = n$
• We start with the prediction that *S* yields the whole input (question  $S \stackrel{*}{\Rightarrow} w$ , |w| = n?).

Axiom: 
$$\underline{[\bullet S, 0, n]}$$
  $|w| = n$ 

■ The goal is to find an *S* that spans the whole input: Goal item: [S●, 0, n] where n = |w|

• We start with the prediction that *S* yields the whole input (question  $S \stackrel{*}{\Rightarrow} w$ , |w| = n?).

Axiom: 
$$\underline{[\bullet S, 0, n]}$$
  $|w| = n$ 

- The goal is to find an *S* that spans the whole input: Goal item:  $[S \bullet, 0, n]$  where n = |w|
- Whenever we encounter a terminal that matches the input, we can turn the predict item into a recognize item.

Scan: 
$$\frac{\left[\bullet a, i, i+1\right]}{\left[a\bullet, i, i+1\right]} \quad w_{i+1} = a$$

• Whenever we have predicted an  $A \in N$  we can predict the RHS of any *A*-production while partitioning the input.

Predict: 
$$\frac{\left[\bullet A, i_0, i_k\right]}{\left[\bullet A_1, i_0, i_1\right], \dots, \left[\bullet A_k, i_{k-1}, i_k\right]} \qquad A \to A_1 \dots A_k \in P$$
$$i_j < i_{j+1}$$

• Whenever we have predicted an  $A \in N$  we can predict the RHS of any *A*-production while partitioning the input.

Predict: 
$$\frac{\left[\bullet A, i_{0}, i_{k}\right]}{\left[\bullet A_{1}, i_{0}, i_{1}\right], \dots, \left[\bullet A_{k}, i_{k-1}, i_{k}\right]} \qquad A \to A_{1} \dots A_{k} \in P$$
$$i_{j} < i_{j+1}$$

• Once all predictions for the rhs are true (turned into recognized items), we can turn also the *A*-item into a recognized item.

Complete:

$$\frac{\left[\bullet A, i_0, i_k\right], \left[A_1 \bullet, i_0, i_1\right], \dots, \left[A_k \bullet, i_{k-1}, i_k\right]}{\left[A \bullet, i_0, i_k\right]} \quad A \to A_1 \dots A_k \in P$$

#### Unger with deduction rules

Sample CFG:  $S \rightarrow aSb \mid ab$ , input word w = aaabbb.

#### Unger with deduction rules

Sample CFG:  $S \rightarrow aSb \mid ab$ , input word w = aaabbb.

Deduced items (only successful parse):

 $[\bullet S, 0, n]$ 

axiom

#### Unger with deduction rules

Sample CFG:  $S \rightarrow aSb \mid ab$ , input word w = aaabbb.

Deduced items (only successful parse):

 $[\bullet S, 0, n]$ axiom  $[\bullet a, 0, 1], [\bullet S, 1, 5], [\bullet b, 5, 6]$ predict

#### Unger with deduction rules

Sample CFG:  $S \rightarrow aSb \mid ab$ , input word w = aaabbb.

Deduced items (only successful parse):

#### Unger with deduction rules

Sample CFG:  $S \rightarrow aSb \mid ab$ , input word w = aaabbb.

Deduced items (only successful parse):

#### Unger with deduction rules

Sample CFG:  $S \rightarrow aSb \mid ab$ , input word w = aaabbb.

#### Unger with deduction rules

Sample CFG:  $S \rightarrow aSb \mid ab$ , input word w = aaabbb.

#### Unger with deduction rules

Sample CFG:  $S \rightarrow aSb \mid ab$ , input word w = aaabbb.

#### Unger with deduction rules

Sample CFG:  $S \rightarrow aSb \mid ab$ , input word w = aaabbb.

Soundness and completeness of Ungers's algorithm:

Assume that we don't have the check on the terminals. Then for all  $X \in N \cup T$ ,  $i, j \in [0..n]$  with i < j:

- $[\bullet X, i, j]$  iff  $S \stackrel{*}{\Rightarrow} \alpha X \beta$  for some  $\alpha, \beta \in (N \cup T)^*$  such that  $|\alpha| \leq i, |\beta| \leq n j;$
- $[X \bullet, i, j]$  iff  $S \stackrel{*}{\Rightarrow} \alpha X \beta \stackrel{*}{\Rightarrow} \alpha w_{i+1} \dots w_j \beta$  for some  $\alpha, \beta \in (N \cup T)^*$ such that  $|\alpha| \leq i, |\beta| \leq n - j;$

Soundness and completeness of Ungers's algorithm:

Assume that we don't have the check on the terminals. Then for all  $X \in N \cup T$ ,  $i, j \in [0..n]$  with i < j:

- $[\bullet X, i, j]$  iff  $S \stackrel{*}{\Rightarrow} \alpha X \beta$  for some  $\alpha, \beta \in (N \cup T)^*$  such that  $|\alpha| \leq i, |\beta| \leq n j;$
- $[X \bullet, i, j]$  iff  $S \stackrel{*}{\Rightarrow} \alpha X \beta \stackrel{*}{\Rightarrow} \alpha w_{i+1} \dots w_j \beta$  for some  $\alpha, \beta \in (N \cup T)^*$ such that  $|\alpha| \leq i, |\beta| \leq n - j;$

This can be shown by induction on the parsing schema:

- Show that claim holds for axiom.
- Show for every deduction rule that, if the claim holds for the antecedent, then it also holds for the consequent.

## Example: Top-Down (1)

Assume CFG without  $\epsilon$ -productions and without loops  $A \stackrel{+}{\Rightarrow} A$ .

```
def top-down(w, \alpha):
    out = false
    if w = \alpha = \varepsilon:
        out = true
    elif w = aw' and \alpha = a\alpha':
        out = top-down(w', \alpha')
                                                           Scan
    elif \alpha = X\alpha' with X \in N:
        for X \to X_1 \dots X_k in P:
             if top-down(w, X_1 \dots X_k \alpha'):
                                                      Predict
                 out = true
    return out
```

# Example: Top-Down (2)

The items must encode

The items must encode

- the remaining input or, alternatively, the position up to which the input has been parsed, and
- the remaining sentential form

The items must encode

- the remaining input or, alternatively, the position up to which the input has been parsed, and
- the remaining sentential form
- $\Rightarrow$  item form  $[\alpha, i]$  with  $\alpha \in (N \cup T)^*, 0 \le i \le n$

# Example: Top-Down (3)

Whenever we have the next input terminal as topmost symbol of the stack (left element of  $\alpha$ ), we can scan it:

Scan: 
$$\frac{[a\alpha, i]}{[\alpha, i+1]}$$
  $w_{i+1} = a$ 

### Example: Top-Down (3)

Whenever we have the next input terminal as topmost symbol of the stack (left element of  $\alpha$ ), we can scan it:

Scan: 
$$\frac{[a\alpha, i]}{[\alpha, i+1]}$$
  $w_{i+1} = a$ 

Whenever the topmost stack symbol is *A* and there is an *A*-production  $A \rightarrow \gamma$ , we can predict this (here with check on length of sentential form):

Predict: 
$$\frac{[A\alpha, i]}{[\gamma\alpha, i]}$$
  $A \to \gamma \in P, |\gamma\alpha| \le n - i$ 

Axiom is the whole input *w* as remaining input (i.e., only the part up to position 0 has been parsed) and a stack containing *S*:

Axiom: (S, 0)

Axiom is the whole input *w* as remaining input (i.e., only the part up to position 0 has been parsed) and a stack containing *S*:

Axiom: 
$$-[S,0]$$

The goal item is an empty stack with the input up to position *n* already parsed:

Goal: 
$$[\epsilon, n]$$
 with  $|w| = n$ 

### Top-Down

CFG  $S \rightarrow aSb \mid ab$ , input w = aaabbb:

Deduced items (only successful ones are listed):

| [S,0]                                      | axiom   |
|--------------------------------------------|---------|
| [aSb, 0]                                   | predict |
| [Sb, 1]                                    | scan    |
| [aSbb, 1]                                  | predict |
| [Sbb, 2]                                   | scan    |
| [abbb, 2]                                  | predict |
| $[bbb, 3], [bb, 4], [b, 5], [\epsilon, 6]$ | scan    |

How about soundness and completeness?

There is a direct correspondence between leftmost derivations of a *w* and parses in a top down parser:

- Soundness: If  $[\alpha, i]$ , then  $S \stackrel{*}{\Rightarrow} w_1 \dots w_i \alpha$ .
- Completeness: If  $S \stackrel{*}{\Rightarrow} w_1 \dots w_i \gamma$  is a leftmost derivation where  $\gamma \in (N \cup T)^*$  such that  $\gamma = A\gamma'$ ,  $A \in N$  or  $\gamma = \epsilon$ , then  $[\gamma, i]$ .

When dealing with natural languages, we are in general faced with highly ambiguous grammars.

- On the one hand, strings can have more than one analysis. Consequently, we need to find some way to branch and pursue all of them.
- On the other hand, different analyses can have common subanalyses for certain substrings. In order to avoid computing these sub-analyses several times, we need to find some way to reuse (partial) parse trees that we have already found.

 $\Rightarrow$  we have to store intermediate parsing results, make sure we pursue all of them and retrieve them if needed in order to reuse them in a different context.

Computation sharing (tabulation) is particularly easy when using parsing schemata:

- During parsing, we deduce new trees from already existing trees (partial results), present as items.
- The same item can be used in different deductions (and has to be calculated only once).

Related notion: chart parsing. The chart is the structure that contains all intermediate results computed so far.

Chart parsing: We have two structures,

- the chart  $\mathcal{C}$
- $\blacksquare$  and an agenda  $\mathcal{A}.$

Both are initialized as empty.

Chart parsing: We have two structures,

- the chart  $\mathcal{C}$
- and an agenda  $\mathcal{A}$ .

Both are initialized as empty.

- We start by computing all items that are axioms, i.e., that can be obtained by applying rules with empty antecedents.
- Starting from these items, we extend the set C as far as possible by subsequent applications of the deduction rules.
- The agenda contains items that are waiting to be used in further deduction rules. It avoids multiple applications of the same instance of a deduction rule.

### General algorithm for chart parsing (recognizer)

#### Chart parsing

```
\mathcal{C} = \mathcal{A} = \emptyset
for all items I resulting form a rule applica-
tion with empty antecedent set:
     add I to C and to A
while \mathcal{A} \neq \emptyset:
     remove an item I from \mathcal{A}
     for all items I' deduced from I and items
     from \mathcal{C} as antecedents:
          if I' \notin \mathcal{C}:
                add I' to C and to A
if there is a goal item in C:
     return true
else return false
```

Example: Unger Parsing: The chart is a  $(n + 1) \times (n + 1)$  table where *n* is the length of the input.

- Whenever an item [•*X*, *i*, *j*] is predicted, we enter it into the chart.
- Whenever an item [*X*•, *i*, *j*] is completed, we replace the predicted item by the completed one.

#### Chart parsing: Unger
















| 6 | S∙ |    |    |    |    | b● |   |
|---|----|----|----|----|----|----|---|
| 5 |    | S• |    |    | b● |    |   |
| 4 |    |    | S∙ | b● |    |    |   |
| 3 |    |    | a● |    |    |    |   |
| 2 |    | a● |    |    |    |    |   |
| 1 | a● |    |    |    |    |    |   |
| 0 |    |    |    |    |    |    |   |
|   | 0  | 1  | 2  | 3  | 4  | 5  | 6 |

### Complexity (1)

For a given grammar *G* and an input sentence  $w \in T^*$ , we call the recognition problem the task to decide whether  $w \in L(G)$  or not.

- Fixed recognition problem: Assume a given grammar *G* (fixed). Then decide for a given input word *w* if  $w \in L(G)$ . In this case, the complexity of the problem is given only with respect to the size of the input sentence *w*, i.e., the size of the grammar is taken to be a constant. This is also sometimes called the word recognition problem.
- Universal recognition problem: Decide for an input grammar G and an input word w if  $w \in L(G)$ . In this case, we have to investigate the complexity of the problem in the size of the input sentence w and the grammar G.

- In real natural language applications, we often deal with very large grammars: Grammars extracted from treebanks for instance can easily have much more than 10,000 productions.
- The average sentence length in natural languages is somewhere between 20 and 30.
- Therefore, for natural language processing, the complexity of the universal recognition problem is an important factor.

### Complexity (3)

We distinguish between the time and the space complexity. We distinguish the following different complexity classes:

• **P** (**PTIME**): problems that can be solved deterministically in an amount of time that is polynomial in the size of the input. I.e., there are constants *c* and a *k* such that the problem can be solved in an amount of time  $\leq cn^k$  where *n* the size of the input.

Notation:  $\mathcal{O}(n^k)$ .

NP: problems whose positive solutions can be verified in polynomial time given the right information, or equivalently, whose solutions can be non-deterministically found in polynomial time.

• **NP-complete**: the hardest problems in NP. A problem is NP-complete if any problem in NP can be transformed into it in polynomial time.

The question whether the two classes P and NP are equal or not is an open question. Most people think however that NP is larger.

# **Complexity (5)**

- The specification of parsing algorithms via deduction rules facilitates the computation of the complexity of an algorithm.
- In order to determine the time complexity, we have to calculate the maximal number of (different) rule applications that is possible.
- This depends on the most complex deduction rule in our parsing schema.

# **Complexity (5)**

- The specification of parsing algorithms via deduction rules facilitates the computation of the complexity of an algorithm.
- In order to determine the time complexity, we have to calculate the maximal number of (different) rule applications that is possible.
- This depends on the most complex deduction rule in our parsing schema.

### Unger: complexity

Most complex rule: complete

$$\frac{[\bullet A, i_0, i_k], [A_1 \bullet, i_0, i_1], \dots, [A_k \bullet, i_{k-1}, i_k]}{[A \bullet, i_0, i_k]} \quad A \to A_1 \dots A_k \in P$$

Complexity  $\mathcal{O}(n^{k+1})$  where *k* the maximal length of a righthand side in the grammar.

### Conclusion

### Parsing Schemata

- characterize partial parsing results via items;
- characterize parsing as a deductive process;
- allow to separate the proper algorithm from data structures and control structures;
- facilitate the proof of soundness and completeness of an algorithm;
- facilitate comparisons between different algorithms;
- make the complexity of an algorithm more visible;
- facilitate tabulation and computation sharing.

- Shieber, S. M., Schabes, Y., and Pereira, F. C. N. (1995). Principles and implementation of deductive parsing. *Journal of Logic Programming*, 24(1 and 2):3–36.
- Sikkel, K. (1997). *Parsing Schemata*. Texts in Theoretical Computer Science. Springer-Verlag, Berlin, Heidelberg, New York.