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Motivation (1)

Algorithmic descriptions of parsing algorithms (e.g., in pseudo-
code) introduce data structures and control structures

�e parsing strategy of the algorithm does not depend on them

�estion: Can we separate the parsing strategy from the control
strategy?

Answer: Parsing as Deduction Shieber et al. (1995); Sikkel (1997)
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Motivation (2)

Advantages:

Concentration on parsing strategy

Facilitation of proofs (e.g., soundness and completeness of an
algorithm):

Soundness: If the algorithm yields true for w, then w ∈ L(G).
Completeness: If w ∈ L(G), then the algo yields true for w .

(Time) Complexity of an algorithm sometimes easier to deter-
mine
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Parsing schemata (1)

How characterize a single parsing step?

During parsing, the parser produces trees (parse trees, partial results)
and tries to combine them to new trees, until some tree rooted by the
goal category (e.g. S) comes out

We can characterize parse trees

We can characterize how new parse trees can be deduced from
existing ones

We can �x a goal: We want to deduce a tree with root S that
spans the entire input sentence
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Parsing Schemata (2)

We characterize a parse tree rooted by some nonterminal X by
the terminals X spans.

We write parse trees/partial parse results in the form of items:
[X , i, j ], meaning that X derives the terminals between posi-
tion i and position j

Items for parse trees

0I1saw2a3girl4 VP

NP

N

girl

Det

a

V

saw

S

VP

NP

N

girl

Det

a

V

saw

NP

I

Items: [VP,1,4] [S,0,4]
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Parsing Schemata (3)

Sometimes, a category and its yield have been predicted but not yet
recognized. To mark this, we can use do�ed items or items with
do�ed productions:

1 •S signi�es that S has been predicted.

2 S• signi�es that S has been recognized.

3 A→ A1 . . .Ai • Ai+1 . . .An signi�es that the rhs of the produc-
tion A→ A1 . . .An has been recognized up to Ai while the part
from Ai+1 to An has been predicted.
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Parsing Schemata (4)

Parsing Schemata understand parsing as a deductive process.

Deduction of new items from existing ones can be described
using inference rules.

General form:

antecedent
consequent

side conditions

Antecedent, consequent: (lists of) items.

Application: if antecedent can be deduced and side conditions
hold, then the consequent can be deduced as well.
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Parsing Schemata (5)

A parsing schema consists of

1 Deduction rules

2 An axiom (or axioms): can be wri�en as a deduction rule with
empty antecedent

3 A goal item

�e parsing algorithm succeeds if, for a given input, it is possi-
ble to deduce the goal item.
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Example: Unger (1)

Assume CFG without ε-productions and without loops A +⇒ A.

function unger(w,X):
out := false;
if w = X, then out := true Scan
else for all X → X1 . . .Xk:

for all x1, . . . , xk ∈ T+ with w = x1 . . . xk: Predict
if

∧k
i=1unger(xi,Xi) Complete

then out := true;
return out

Initial call: unger(w,S) Axiom

10 / 34



Example: Unger (2)

An Unger item needs to caracterize

1 A nonterminal category or a terminal symbol

2 Its yield in the input string

3 Whether the item is predicted or recognized

Item form:
[•X , i, j] or [X•, i, j] with X ∈ N ∪ T , i, j ∈ N, i ≤ j.
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Example: Unger (3)

We start with the prediction that S yields the whole input
(question S ∗⇒ w, |w| = n?).

Axiom:
[ •S, 0, n ] |w| = n

�e goal is to �nd an S that spans the whole input:

Goal item: [ S•, 0, n ] where n = |w|

Whenever we encounter a terminal that matches the input, we
can turn the predict item into a recognize item.

Scan: [ •a, i, i + 1 ]
[ a•, i, i + 1 ] wi+1 = a

12 / 34
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Example: Unger (4)

Whenever we have predicted an A ∈ N we can predict the RHS
of any A-production while partitioning the input.

Predict: [ •A, i0, ik ]
[ •A1, i0, i1 ] , . . . , [ •Ak, ik−1, ik ]

A→ A1 . . .Ak ∈ P
ij < ij+1

Once all predictions for the rhs are true (turned into recognized
items), we can turn also the A-item into a recognized item.

Complete:

[ •A, i0, ik ] , [A1•, i0, i1 ] , . . . , [Ak•, ik−1, ik ]
[A•, i0, ik ]

A→ A1 . . .Ak ∈ P
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Example: Unger (5)

Unger with deduction rules
Sample CFG: S → aSb | ab, input word w = aaabbb.

Deduced items (only successful parse):

[•S, 0, n] axiom
[•a, 0, 1], [•S, 1, 5], [•b, 5, 6] predict
[a•, 0, 1], [•a, 1, 2], [•S, 2, 4], [•b, 4, 5], [b•, 5, 6] scan, predict, scan
[a•, 1, 2], [•a, 2, 3], [•b, 3, 4], [b•, 4, 5] scan, predict, scan
[a•, 2, 3], [b•, 3, 4] scan, scan
[S•, 2, 4] complete
[S•, 1, 5] complete
[S•, 0, 6] complete
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Example: Unger (6)

Soundness and completeness of Ungers’s algorithm:
Assume that we don’t have the check on the terminals. �en for all
X ∈ N ∪ T , i, j ∈ [0..n] with i < j:

[•X , i, j] i� S ∗⇒ αXβ for some α, β ∈ (N ∪ T)∗ such that
|α| ≤ i, |β| ≤ n− j;
[X•, i, j] i� S ∗⇒ αXβ ∗⇒ αwi+1 . . .wjβ for some α, β ∈ (N∪T)∗
such that |α| ≤ i, |β| ≤ n− j;

�is can be shown by induction on the parsing schema:

1 Show that claim holds for axiom.
2 Show for every deduction rule that, if the claim holds for the

antecedent, then it also holds for the consequent.

15 / 34
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Example: Top-Down (1)

Assume CFG without ε-productions and without loops A +⇒ A.

def top-down(w,α):
out = false
if w = α = ε:

out = true
elif w = aw′ and α = aα′:

out = top-down(w′,α′) Scan
elif α = Xα′ with X ∈ N:

for X → X1 . . .Xk in P:
if top-down(w, X1 . . .Xkα

′): Predict
out = true

return out

16 / 34



Example: Top-Down (2)

�e items must encode

the remaining input or, alternatively, the position up to which
the input has been parsed, and

the remaining sentential form

⇒ item form [α, i] with α ∈ (N ∪ T)∗, 0 ≤ i ≤ n

17 / 34
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Example: Top-Down (3)

Whenever we have the next input terminal as topmost symbol of the
stack (le� element of α), we can scan it:

Scan: [aα, i]
[α, i + 1] wi+1 = a

Whenever the topmost stack symbol is A and there is an A-production
A→ γ, we can predict this (here with check on length of sentential
form):

Predict: [Aα, i]
[γα, i]

A→ γ ∈ P, |γα| ≤ n− i

18 / 34
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Example: Top-Down (4)

Axiom is the whole input w as remaining input (i.e., only the part up
to position 0 has been parsed) and a stack containing S:

Axiom:
[S, 0]

�e goal item is an empty stack with the input up to position n
already parsed:

Goal: [ε, n] with |w| = n

19 / 34
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Example: Top-Down (5)

Top-Down
CFG S → aSb | ab, input w = aaabbb:

Deduced items (only successful ones are listed):

[S, 0] axiom
[aSb, 0] predict
[Sb, 1] scan
[aSbb, 1] predict
[Sbb, 2] scan
[abbb, 2] predict
[bbb, 3], [bb, 4], [b, 5], [ε, 6] scan
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Example: Top-Down (6)

How about soundness and completeness?

�ere is a direct correspondence between le�most derivations of a w
and parses in a top down parser:

Soundness: If [α, i], then S ∗⇒ w1 . . .wiα.

Completeness: If S ∗⇒ w1 . . .wiγ is a le�most derivation where
γ ∈ (N ∪ T)∗ such that γ = Aγ′, A ∈ N or γ = ε, then [γ, i].
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Implementation issues (1)

When dealing with natural languages, we are in general faced with
highly ambiguous grammars.

1 On the one hand, strings can have more than one analysis.
Consequently, we need to �nd some way to branch and pursue
all of them.

2 On the other hand, di�erent analyses can have common sub-
analyses for certain substrings. In order to avoid computing
these sub-analyses several times, we need to �nd some way to
reuse (partial) parse trees that we have already found.

⇒ we have to store intermediate parsing results, make sure we
pursue all of them and retrieve them if needed in order to reuse them
in a di�erent context.
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Implementation issues (2)

Computation sharing (tabulation) is particularly easy when using
parsing schemata:

During parsing, we deduce new trees from already existing
trees (partial results), present as items.

�e same item can be used in di�erent deductions (and has to
be calculated only once).

Related notion: chart parsing. �e chart is the structure that contains
all intermediate results computed so far.

23 / 34



Implementation issues (3)

Chart parsing:
We have two structures,

the chart C
and an agenda A.

Both are initialized as empty.

We start by computing all items that are axioms, i.e., that can
be obtained by applying rules with empty antecedents.

Starting from these items, we extend the set C as far as possible
by subsequent applications of the deduction rules.

�e agenda contains items that are waiting to be used in fur-
ther deduction rules. It avoids multiple applications of the same
instance of a deduction rule.
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Implementation issues (4)

General algorithm for chart parsing (recognizer)

Chart parsing
C = A = ∅
for all items I resulting form a rule applica-
tion with empty antecedent set:

add I to C and to A
while A 6= ∅:

remove an item I from A
for all items I ′ deduced from I and items
from C as antecedents:

if I ′ /∈ C:
add I ′ to C and to A

if there is a goal item in C:
return true

else return false
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Implementation issues (5)

Example: Unger Parsing: �e chart is a (n+ 1)× (n+ 1) table where
n is the length of the input.

Whenever an item [•X , i, j] is predicted, we enter it into the
chart.
Whenever an item [X•, i, j] is completed, we replace the pre-
dicted item by the completed one.
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Implementation issues (5)

Chart parsing: Unger
Sample CFG: S → aSb | ab, input word w = aaabbb (with terminal
�lter).

6 •S

• •b•

5

•S• •b•

4

•S• •b•

3

•a•

2

•a•

1

•a•

0
0 1 2 3 4 5 6
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Complexity (1)

For a given grammar G and an input sentence w ∈ T∗, we call the
recognition problem the task to decide whether w ∈ L(G) or not.

Fixed recognition problem: Assume a given grammar G (�xed).
�en decide for a given input word w if w ∈ L(G). In this case,
the complexity of the problem is given only with respect to
the size of the input sentence w, i.e., the size of the grammar is
taken to be a constant. �is is also sometimes called the word
recognition problem.

Universal recognition problem: Decide for an input grammar
G and an input word w if w ∈ L(G). In this case, we have to
investigate the complexity of the problem in the size of the
input sentence w and the grammar G.
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Complexity (2)

In real natural language applications, we o�en deal with very
large grammars: Grammars extracted from treebanks for in-
stance can easily have much more than 10, 000 productions.

�e average sentence length in natural languages is somewhere
between 20 and 30.

�erefore, for natural language processing, the complexity of
the universal recognition problem is an important factor.
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Complexity (3)

We distinguish between the time and the space complexity.
We distinguish the following di�erent complexity classes:

P (PTIME): problems that can be solved deterministically in
an amount of time that is polynomial in the size of the input.
I.e., there are constants c and a k such that the problem can
be solved in an amount of time ≤ cnk where n the size of the
input.
Notation: O(nk).
NP: problems whose positive solutions can be veri�ed in poly-
nomial time given the right information, or equivalently, whose
solutions can be non-deterministically found in polynomial
time.
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Complexity (4)

NP-complete: the hardest problems in NP. A problem is NP-
complete if any problem in NP can be transformed into it in
polynomial time.

�e question whether the two classes P and NP are equal or not is an
open question. Most people think however that NP is larger.
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Complexity (5)

�e speci�cation of parsing algorithms via deduction rules
facilitates the computation of the complexity of an algorithm.
In order to determine the time complexity, we have to calculate
the maximal number of (di�erent) rule applications that is
possible.
�is depends on the most complex deduction rule in our pars-
ing schema.

Unger: complexity
Most complex rule: complete

[•A, i0, ik], [A1•, i0, i1], . . . , [Ak•, ik−1, ik]
[A•, i0, ik]

A → A1 . . .Ak ∈ P

Complexity O(nk+1) where k the maximal length of a righthand
side in the grammar.
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Conclusion

Parsing Schemata

characterize partial parsing results via items;
characterize parsing as a deductive process;
allow to separate the proper algorithm from data structures and
control structures;
facilitate the proof of soundness and completeness of an algo-
rithm;
facilitate comparisons between di�erent algorithms;
make the complexity of an algorithm more visible;
facilitate tabulation and computation sharing.
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