
Parsing
Cocke Younger Kasami (CYK)

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Winter 2017/18

1 / 35

Table of contents

1 Introduction

2 �e recognizer

3 �e CNF recognizer

4 CYK parsing

5 CYK with do�ed productions

6 Bibliography

2 / 35

Introduction

�e CYK parser is

a bottom-up parser: we start with the terminals in the input
string and subsequently compute recognized parse trees by
going from already recognized rhs of productions to the non-
terminal on the le�hand side.

a non-directional parser: the checking for recognized com-
ponents of a rhs in order to complete a lhs is not ordered; in
particular, we cannot complete only parts of a rhs, everything
in the rhs must be recognized in order to complete the le�hand
category.

Independently proposed by Cocke, Kasami and Younger in the 60s.

Cocke and Schwartz (1970); Grune and Jacobs (2008); Hopcro� and
Ullman (1979, 1994); Kasami (1965); Younger (1967)

3 / 35

�e general recognizer (1)

We store the results in a (n+ 1)× (n+ 1) chart (table) C such that
A ∈ Ci,l i� A ∗⇒ wi . . .wi+l−1.
In other words,

i is the index of the �rst terminal in the relevant substring of w;
i ranges from 1 to n+ 1 (the la�er for an empty word following
wn)
l is the length of the substring; l ranges from 0 to n.

All �elds in the chart are initialized with ∅.

4 / 35

�e general recognizer (2)

General CYK recognizer (for arbitrary CFGs):

Ci,1 := {wi} for all 1 ≤ i ≤ n scan
Ci,0 := {A |A→ ε ∈ P} for all i ∈ [1..n+ 1] ε-productions
for all l ∈ [0..n]:

for all i1 ∈ [1..n+ 1]:
repeat until chart does not change any more:

for every A→ A1 . . .Ak:
if there are l1, . . . , lk ∈ [0..n] such that

l1 + · · ·+ lk = l and
Aj ∈ Cij ,lj with ij = i1 + l1 · · ·+ lj−1,

then Ci1,l := Ci1,l ∪ {A} complete

5 / 35

�e general recognizer (3)

Example
S → ABC, A→ aA | ε, B→ bB | ε, C → c.
w = aabbbc.
l
6 S
5 S
4 S
3 B S
2 A B B S
1 a,A a,A b,B b,B b,B c,C, S
0 A,B A,B A,B A,B A,B A,B A,B

1 2 3 4 5 6 7 i

6 / 35

�e general recognizer (4)

Parsing schema for CYK:
Items have three elements:

X ∈ N ∪ T : the nonterminal/terminal that spans a substring
wi, . . . ,wj of w;
the index i of the �rst terminal in the subsequence;
the length l = j − i of the subsequence.

Item form: [X , i, l] with X ∈ N ∪ T , i ∈ [1..n+ 1], l ∈ [0..n].

7 / 35

�e general recognizer (5)

Goal item: [S, 1, n].
Deduction rules:
Scan:

[a, i, 1] wi = a

ε-productions:
[A, i, 0] A→ ε ∈ P, i ∈ [1..n+ 1]

Complete: [A1, i1, l1], . . . , [Ak, ik, lk]
[A, i1, l]

A→ A1 . . .Ak ∈ P,
l = l1 + · · ·+ lk,
ij = i1 + l1 · · ·+ lj−1

8 / 35

�e general recognizer (6)

Tabulation avoids problems with loops: nothing needs to be
computed more than once.
In each complete step, we have to check for all l1, . . . , lk . �is is
costly.
Note, however, that we create a new chart entry (new item)
only for combinations of already recognized parse trees. (No
blind prediction as in Unger’s parser.)
With unary rules and ε-productions, an entry in �eld Ci,l can
be reused to compute a new entry in Ci,l . �is is why the re-
peat until chart does not change any more loop
is necessary.

9 / 35

�e CNF recognizer (1)

A CFG is in Chomsky Normal Form i� all productions are either of
the form A→ a or A→ B C.
If the grammar has this form,

we need to check only l1, l2 in a complete step, and
we can be sure that to compute an entry in �eld Ci,l , we do not
use another entry from �eld Ci,l . Consequently, we do not need
the repeat until chart does not change any
more loop.

10 / 35

�e CNF recognizer (2)

�e chart C is now an n× n-chart.

Ci,1 := {A |A→ wi ∈ P} scan
for all l ∈ [1..n]:

for all i ∈ [1..n]:
for every A→ B C:

if there is a l1 ∈ [1..l − 1] such that
B ∈ Ci,l1 and C ∈ Ci+l1,l−l1,

then Ci,l := Ci,l ∪ {A} complete

11 / 35

�e CNF recognizer (3)

Parsing schema for CNF CYK:
Goal item: [S, 1, n]
Deduction rules:
Scan:

[A, i, 1] A→ wi ∈ P

Complete: [B, i, l1], [C, i + l1, l2]
[A, i, l1 + l2]

A→ B C ∈ P

12 / 35

�e CNF recognizer (4)

Example
S → CaCb | CaSB, SB → SCb,Ca → a,Cb → b. (From S → aSb | ab
with transformation into CNF.)
w = aaabbb.
l
6 S
5 SB
4 S
3 SB
2 S
1 Ca Ca Ca Cb Cb Cb

1 2 3 4 5 6 i
a a a b b b

13 / 35

�e CNF recognizer (5)

Time complexity: How many di�erent instances of scan and complete
are possible?

Scan:
[A, i, 1] A→ wi ∈ P c1n

Complete: [B, i, l1], [C, i + l1, l2]
[A, i, l1 + l2]

A→ B C ∈ P c2n3

Consequently, the time complexity of CYK for CNF is O(n3).

�e space complexity of CYK is O(n2).

14 / 35

�e CNF recognizer (6)

Control structures: there are two possible orders in which the chart
can be �lled:

1 o�-line order: �ll �rst row 1, then row 2 etc.:
for all l ∈ [1..n]: (length)

for all i ∈ [1..n− l + 1]: (start position)
compute Ci,l

2 on-line order: �ll one diagonal a�er the ather, starting with 1, 1
and proceeding from k, 1 to 1, k:
for all k ∈ [1..n]: (end position)

for all l ∈ [1..k]: (length)
compute Ck−l+1,l

15 / 35

�e CNF recognizer (6)

1 Soundness of the algorithm: If [A, i, l], then A ∗⇒ wi . . .wi+l−1.
Proof via induction over deduction rules.

2 Completeness of the algorithm: If A ∗⇒ wi . . .wi+l−1, then
[A, i, l].
Proof via induction over l.

16 / 35

CYK parsing (1)

We know that for every CFG G with ε /∈ L(G) we can

eliminate ε-productions,
eliminate unary productions,
eliminate useless symbols,
transform into CNF,

and the resulting CFG G′ is such that L(G) = L(G′).
�erefore, for every CFG, we can use the CNF recognizer a�er
transformation.

How can we obtain a parser?

17 / 35

CYK parsing (2)

We need to do two things:

turn the CNF recognizer into a parser, and
if the original grammar was not in CNF, retrieve the original
syntax from the CNF syntax.

18 / 35

CYK parsing (3)

To turn the CNF recognizer into a parser, we record not only
non-terminal categories but whole productions with the positions and
lenghts of the rhs symbols in the chart (i.e., with backpointers):

Ci,1 := {A→ wi |A→ wi ∈ P}
for all l ∈ [1..n]:

for all i ∈ [1..n]:
for every A→ B C:

if there is a l1 ∈ [1..l − 1] such that
B ∈ Ci,l1 and C ∈ Ci+l1,l−l1,

then Ci,l := Ci,l ∪ {A→ [B, i, l1][C, i + l1, l − l1]}

We can then obtain a parse tree by traversing the productions from
le� to right, starting with every S-production in C1,n.

19 / 35

CYK parsing (4)

Example
S → CaCb | CaSB, SB → SCb,Ca → a,Cb → b, w = aaabbb. (We
write Ai,l for [A, i, l].)
S →
Ca1,1SB2,5

SB →
S2,4Cb6,1
S →
Ca2,1SB3,3

SB →
S3,2Cb5,1
S →
Ca3,1Cb4,1

Ca → a Ca → a Ca → a Cb → b Cb → b Cb → b

20 / 35

CYK parsing (5)

From the CNF parse tree to the original parse tree:
First, we undo the CNF transformation:

replace every Ca → a in the chart with a and replace every
occurrence of Ca in a production with a.
For all l, i ∈ [1..n]: If A → αDiD,lD ∈ Ci,l such that D is a new
symbol introduced in the CNF transformation and D → β ∈
CiD,lD , then replace A→ αDiD,lD with A→ αβ in Ci,l .
Finally remove all D → γ with D being a new symbol intro-
duced in the CNF transformation from the chart.

21 / 35

CYK parsing (6)

Example
S → CaCb | CaSB, SB → SCb,Ca → a,Cb → b, w = aaabbb. New
symbols: Ca,Cb, SB. Elimination of Ca,Cb:
6 S → aSB2,5
5 SB → S2,4b
4 S → aSB3,3
3 SB → S3,2b
2 S → ab
1 a a a b b b

1 2 3 4 5 6

22 / 35

CYK parsing (7)

Example
S → CaCb | CaSB, SB → SCb,Ca → a,Cb → b, w = aaabbb.
Replacing of SB in rhs:
6 S → aS2,4b
5 SB → S2,4b
4 S → aS3,2b
3 SB → S3,2b
2 S → ab
1 a a a b b b

1 2 3 4 5 6

23 / 35

CYK parsing (8)

Example
S → CaCb | CaSB, SB → SCb,Ca → a,Cb → b, w = aaabbb.
Elimination of SB:
6 S → aS2,4b
5
4 S → aS3,2b
3
2 S → ab
1 a a a b b b

1 2 3 4 5 6

24 / 35

CYK parsing (9)

Undo the elimination of unary productions:

For every A → β in Ci,l that has been added in removing of
the unary productions to replace B→ β′ (β′ is β without chart
indices): replace A with B in this entry in Ci,l .
For every unary production A → B in the original grammar
and for every B → β ∈ Ci,l : add A → Bi,l to Ci,l . Repeat this
until chart does not change any more.

25 / 35

CYK parsing (10)

Undo the elimination of ε-productions:

Add a row with l = 0 and a column with i = n+ 1 to the chart.
Fill row 0 as in the general case using the original CFG gram-
mar (tabulating productions).
For every A → β in Ci,l that has been added in removing
the ε-productions: add the deleted nonterminals to β with the
position of the preceding non-terminal as starting position (or i
if it is the �rst in the rhs) and with length 0.

26 / 35

CYK parsing (11)

Terminal Filter: Observation: Information on the obligatory presence
of terminals might get lost in the CNF transformation:
S → aSb (requires an a, an S and a b) ; S → CaSB (requires an a and
an S and a b) and SB → SCb (requires an S and a b)
Consider an input babb:

In a CYK parser with the orignal grammar, we would derive
[S, 2, 2] and [b, 4, 1] but we could not apply S → aSb.
In the CNF grammar, we would have [S, 2, 2] and [Cb, 4, 1] and
then we could apply SB → SCb and obtain [SB, 2, 3] even though
the only way to continue with SB in a rhs is with S → CaSB
which is not possible since the �rst terminal is not an a.

27 / 35

CYK parsing (12)

Solution: add an additional check:

Every new non-terminal D introduced for binarization stands
(deterministically) for some substring β of a rhs αβ.
Ex: SB in our sample grammar stands for Sb.
Every terminal in this rhs to the le� of β, i.e., evey terminal in
α must necessarily be present to the le� for a deduction of a D
that leads to a goal item.
Ex: SB can only lead to a goal item if to its le� we have an a.
Terminal Filter: During CNF transformation, for every non-
terminal D introduced for binarization, record the sets of termi-
nals in the rhs to the le� of the part covered by D.
During parsing, check for the presence of these terminals to the
le� of the deduced D item.

28 / 35

CYK with do�ed productions (1)

CNF leads to a binarization: In each completion, only two items are
combined.
Such a binarization can be obtained by using do�ed productions:

We process the rhs of a production from le� to right.
In each complete step, a production A → α • Xβ is combined
with an X whose span starts at the end of the α-span. �e
result is a production A→ αX • β.
We start with the completed terminals and their spans.

Note that this version of CYK is directional.

29 / 35

CYK with do�ed productions (2)

Parsing schema for the general version (allowing also for
ε-productions):

Goal items: [S → α•, 0, n] for all S-productions S → α.

Deduction rules:
Predict (axioms):

[A→ •α, i, i] A→ α ∈ P, i ∈ [0..n]

Scan: [A→ α • aβ, i, j]
[A→ αa • β, i, j + 1] wj+1 = a

Complete: [A→ α • Bβ, i, j][B→ γ•, j, k]
[A→ αB • β, i, k]

30 / 35

CYK with do�ed productions (3)

Parsing schema including passive items (just a non-terminal or
terminal, no do�ed production) and assuming an ε-free CFG:

Goal item: [S, 0, n]

Deduction rules:
Scan (axioms):

[a, i, i + 1] wi+1 = a

Le�-corner predict: [X , i, j]
[A→ X • α, i, j] A→ Xα ∈ P,X ∈ N ∪ T

Complete: [A→ α • Xβ, i, j][X , j, k]
[A→ αX • β, i, k]

Publish: [A→ α•, i, j]
[A, i, j]

(�is is actually a deduction-based version of le�-corner parsing.)
31 / 35

CYK with do�ed productions (4)

Example
Example (without ε-productions, le�-corner parsing): S → ab | aSb
w = aabb
4 S → aSb•

S
3 S → aS • b
2 S → ab•

S
1 a a b b

S → a • b S → a • b
S → a • Sb S → a • Sb
1 2 3 4

32 / 35

CYK with do�ed productions (5)

What about time complexity?

�e most complex operation, complete, involves only three indices
i, j, k ranging from 0 to n:

Complete: [A→ α • Xβ, i, j][X , j, k]
[A→ αX • β, i, k]

Consequently, the time complexity is O(n3), as in the CNF case.

But: the data structure required for representing a parse item with a
do�ed production is slightly more complex that what is needed for
simple passive items.

33 / 35

Conclusion

CYK is a non-directional bo�om-up parser.
If used with CNF, it is very e�cient. Time complexity is O(n3).
�e transformation into CNF can be undone a�er parsing, i.e.,
we still have a parser for arbitrary CFGs (as long as ε is not in
the language).
Instead of explicitly binarizing, we can use do�ed productions
and move through the righthand sides of productions step by
step from le� to right, which also leads to O(n3).

34 / 35

Bibliography

Cocke, J. and Schwartz, J. T. (1970). Programming languages and their
compilers: Preliminary notes. Technical report, CIMS, NYU. 2nd revised
edition.

Grune, D. and Jacobs, C. (2008). Parsing Techniques. A Practical Guide.
Monographs in Computer Science. Springer. Second Edition.

Hopcro�, J. E. and Ullman, J. D. (1979). Introduction to Automata �eory,
Languages and Computation. Addison Wesley.

Hopcro�, J. E. and Ullman, J. D. (1994). Einführung in die Automatentheorie,
Formale Sprachen und Komplexitätstheorie. Addison Wesley, 3. edition.

Kasami, T. (1965). An e�cient recognition and syntax-analysis algorithm for
context-free languages. Technical report, AFCRL.

Younger, D. H. (1967). Recognition and parsing of context-free languages in
time n3. Inform. Control, 10(2):189–20.

35 / 35

	Introduction
	The recognizer
	The CNF recognizer
	CYK parsing
	CYK with dotted productions
	Bibliography

