Parsing
Cocke Younger Kasami (CYK)

Laura Kallmeyer

Heinrich-Heine-Universitit Diisseldorf

Winter 2017/18

A=
HEINRICH HEINE

UNIVERSITAT DUSSELDORF



Table of contents

© Introduction

© The recognizer

© The CNF recognizer

@ CYK parsing

© CYK with dotted productions

@ Bibliography



Introduction

The CYK parser is

m a bottom-up parser: we start with the terminals in the input
string and subsequently compute recognized parse trees by
going from already recognized rhs of productions to the non-
terminal on the lefthand side.

m a non-directional parser: the checking for recognized com-
ponents of a rhs in order to complete a lhs is not ordered; in
particular, we cannot complete only parts of a rhs, everything
in the rhs must be recognized in order to complete the lefthand
category.

Independently proposed by Cocke, Kasami and Younger in the 60s.

Cocke and Schwartz (1970); Grune and Jacobs (2008); Hopcroft and
Ullman (1979, 1994); Kasami (1965); Younger (1967)



The general recognizer (1)

We store the results in a (n + 1) x (n+ 1) chart (table) C such that
A€ Ci,l if A= Wi Wit]—1.
In other words,

m iis the index of the first terminal in the relevant substring of w;
i ranges from 1 to n + 1 (the latter for an empty word following
Wn)

m [is the length of the substring; ! ranges from 0 to n.
All fields in the chart are initialized with ().



The general recognizer (2)

General CYK recognizer (for arbitrary CFGs):

Cii:={w} for all 1<i<n scan
Cio:={A|A— €€ P} for all i€[l.n+1] e-productions
for all le€[0..n]:
for all i €l.n+1]:
repeat until chart does not change any more:
for every A— A;... Ag:
if there are I,...,It €[0..n] such that
L+---+L=1 and
Aje Cl“lj with ij: i1+ll"'+lj_1,
then G ;:= C; U{A} complete

it



The general recognizer (3)

S— ABC,A — aA|e, B— bB|¢e, C— c

wl: aabbbc.

6| S

5 S

4 S

3 B S

2| A B B S

1{aA | aA |bB |bB |bB | cC,S

0| AB|AB|AB | AB|AB | AB AB

It Tz [3 [« [5 e [7 [i



The general recognizer (4)

Parsing schema for CYK:
Items have three elements:

®m X € N U T: the nonterminal/terminal that spans a substring
Wi, ..., wj of w;
m the index i of the first terminal in the subsequence;

m the length [ = j — i of the subsequence.
Item form: [X, i, [JwithX e NUT,i€ [l.n+1], 1€ [0..n].



The general recognizer (5)

Goal item: [S, 1, n].
Deduction rules:

Scan: m w; = da

e-productions: A—e€Pic[l.n+1]

[A,i,0]

[A17 ila ll]a e ey [Ak7 ik, lk] f:_zlA_:_ ﬁfli P,

[Aaibl] =i +h-+ L

Complete:



The general recognizer (6)

m Tabulation avoids problems with loops: nothing needs to be
computed more than once.

m In each complete step, we have to check for all Iy, . .., lx. This is
costly.

m Note, however, that we create a new chart entry (new item)
only for combinations of already recognized parse trees. (No
blind prediction as in Unger’s parser.)

m With unary rules and e-productions, an entry in field C;; can
be reused to compute a new entry in C; ;. This is why the re-
peat until chart does not change any more loop
is necessary.



The CNF recognizer (1)

A CFG is in Chomsky Normal Form iff all productions are either of
the form A — aor A — BC.
If the grammar has this form,

m we need to check only [, I; in a complete step, and

m we can be sure that to compute an entry in field C; ;, we do not
use another entry from field C; ;. Consequently, we do not need
the repeat until chart does not change any
more loop.



The CNF recognizer (2)

The chart C is now an n X n-chart.

Ci1:={A|A— w; € P} scan
for all le€[1.n]:
for all i€ [l.n]:
for every A— B C:
if there is a L €[1..l—1] such that
B e Ci,h and C e Ci+l1,l—l1 9
then C;;:=C;;U{A} complete



The CNF recognizer (3)

Parsing schema for CNF CYK:
Goal item: [S, 1, n]
Deduction rules:

Scan: WA%WIEP

[B,i, L], [C,i+ L, L]
{Aa iv ll + lZ]

Complete: A—BCeP



The CNF recognizer (4)

Example

S — C,Cp | C4Sp, S — SCp, C; — a,Cp — b. (From S — aSbh | ab
with transformation into CNF.)
w = aaabbb.

l

6| S

5 Sp

4 S

3 Sp

2 S

1| Ca | Ca|Cu|Cp|CplCy

3 4 5 6 i

a |a a |b |[b |Db




The CNF recognizer (5)

Time complexity: How many different instances of scan and complete
are possible?

Scan: m A— w, P cin
. [Ba ia ll]a [Ca i+ 117 12] 3
Complete: A LL T b A—BCeP con

Consequently, the time complexity of CYK for CNF is O(n?).

The space complexity of CYK is O(n?).



The CNF recognizer (6)

Control structures: there are two possible orders in which the chart

can be filled:

Q off-line order: fill first row 1, then row 2 etc.:
for all le[l.n]: (length)
for all ie[l.n—1+1]: (start position)
compute C;;
@ on-line order: fill one diagonal after the ather, starting with 1, 1
and proceeding from k, 1 to 1, k:
for all ke l.n: (end position)
for all le€[1.k: (length)
compute Ci_jy1,



The CNF recognizer (6)

© Soundness of the algorithm: If [A, i, [], then A = w; ... wir_1.

Proof via induction over deduction rules.

@ Completeness of the algorithm: If A = Wi ...Wi_1, then
[A, 4, 1].
Proof via induction over .



CYK parsing (1)

We know that for every CFG G with € ¢ L(G) we can

eliminate e-productions,

eliminate unary productions,

eliminate useless symbols,

transform into CNF,

and the resulting CFG G’ is such that L(G) = L(G).
Therefore, for every CFG, we can use the CNF recognizer after
transformation.

How can we obtain a parser?



CYK parsing (2)

We need to do two things:

m turn the CNF recognizer into a parser, and

m if the original grammar was not in CNF, retrieve the original
syntax from the CNF syntax.



CYK parsing (3)

To turn the CNF recognizer into a parser, we record not only
non-terminal categories but whole productions with the positions and
lenghts of the rhs symbols in the chart (i.e., with backpointers):

Ci71 = {A—> W1|A—> Wi EP}
for all lel.n]:
for all i€ [l.n:
for every A— B C:
if there is a I €[1.l1—1] such that
B e Ci,ll and Ce€ Ci-i-ll,l—ll 5
then Ci;:=C;U{A— [B,i,L][C,i+L,]— L]}

We can then obtain a parse tree by traversing the productions from
left to right, starting with every S-production in Cy .



CYK parsing (4)

S — C,Cy | C4Sp, S — SCp, C; — a,Cp — b, w = aaabbb. (We

write A;; for [A, ,1].)

S —
Cal,ISBZ,S
SB —
52,4Crs 1
S —
Caz,ISBS 3
Sg —
53,2Cb5,1
S —
Ca3,1Cb4,1
C,—a C,—a C,—a Co—b| C,—b| C,—Db

20/35



CYK parsing (5)

From the CNF parse tree to the original parse tree:
First, we undo the CNF transformation:

m replace every C, — ain the chart with a and replace every
occurrence of C, in a production with a.

m Forall ;i € [1.n]: If A — aD,, j, € C;;such that D is a new
symbol introduced in the CNF transformation and D — 8 €
C then replace A — aDj, ;, with A — afin Cj;.

m Finally remove all D — ~ with D being a new symbol intro-
duced in the CNF transformation from the chart.

ip,Ip>



CYK parsing (6)

S — C,Cp | C4Sp, S — SCp, Cs — a,Cp — b, w = aaabbb. New
symbols: C,, Cp, Sp. Elimination of C,, Cp:

6 S—)aSst

5 SB_>SZ,4b

4 S—>aSB33

3 SB—)S3’2b

2 S — ab

11 a a a b|b|b
1 2 3 [4]5]6]

22/35



CYK parsing (7)

S — C,Cp| CySp, S5 — SCy,Cy — a,Cp — b, w = aaabbb.

Replacing of Sg in rhs:
6 S — a52’4b
5 Sg — SgAb
4 S — aS372b
3 Sg — Sg’gb
2 S — ab
1| a a a b|bl|b




CYK parsing (8)

S — C,Gy | CaSB, Sg — SCb, C, — a, Cp — b, w = aaabbb.
Elimination of Sg:
6 S — a52,4b

S — (153’2b

=N WUl




CYK parsing (9)

Undo the elimination of unary productions:

m For every A — (3 in C;; that has been added in removing of
the unary productions to replace B — ' (3’ is 8 without chart
indices): replace A with B in this entry in C; .

m For every unary production A — B in the original grammar
and for every B — 3 € C;;: add A — B;; to C;;. Repeat this
until chart does not change any more.



CYK parsing (10)

Undo the elimination of e-productions:

m Add arow with [ = 0 and a column with i = n + 1 to the chart.

m Fill row 0 as in the general case using the original CFG gram-
mar (tabulating productions).

m For every A — [3in C;; that has been added in removing
the e-productions: add the deleted nonterminals to 8 with the
position of the preceding non-terminal as starting position (or i
if it is the first in the rhs) and with length 0.



CYK parsing (11)

Terminal Filter: Observation: Information on the obligatory presence
of terminals might get lost in the CNF transformation:

S — aSb (requires an g, an S and a b) ~ S — C,Sp (requires an a and
an S and a b) and Sg — SC}, (requires an S and a b)

Consider an input babb:

m In a CYK parser with the orignal grammar, we would derive
[S,2,2] and [b, 4, 1] but we could not apply S — aSb.

m In the CNF grammar, we would have [S, 2, 2] and [Cp, 4, 1] and
then we could apply Sg — SC}, and obtain [Sg, 2, 3] even though
the only way to continue with Sp in a rhs is with S — C,Sp
which is not possible since the first terminal is not an a.



CYK parsing (12)

Solution: add an additional check:

m Every new non-terminal D introduced for binarization stands
(deterministically) for some substring (5 of a rhs af.
Ex: S in our sample grammar stands for Sb.

m Every terminal in this rhs to the left of 3, i.e., evey terminal in
o must necessarily be present to the left for a deduction of a D
that leads to a goal item.

Ex: Sp can only lead to a goal item if to its left we have an a.

m Terminal Filter: During CNF transformation, for every non-
terminal D introduced for binarization, record the sets of termi-
nals in the rhs to the left of the part covered by D.

During parsing, check for the presence of these terminals to the
left of the deduced D item.



CYK with dotted productions (1)

CNF leads to a binarization: In each completion, only two items are
combined.
Such a binarization can be obtained by using dotted productions:

m We process the rhs of a production from left to right.

m In each complete step, a production A — « e X3 is combined
with an X whose span starts at the end of the a-span. The
result is a production A — aX e (3.

m We start with the completed terminals and their spans.

Note that this version of CYK is directional.



CYK with dotted productions (2)

Parsing schema for the general version (allowing also for
g-productions):

Goal items: [S — «e, 0, n] for all S-productions S — «.

Deduction rules:

Predict (axioms): A— aePi€|0..n]

) [A— aeaf,i,j B
Sean: [A— aaef,ij+1] Wit1 = a
Complete: [A — a e Bf, l,_]] [B — ve, j, k]

[A— aBe f,i, k]



CYK with dotted productions (3)

Parsing schema including passive items (just a non-terminal or
terminal, no dotted production) and assuming an e-free CFG:

Goal item: [S, 0, n]

Deduction rules:

Scan (axioms): Wil = a

la,i,i+ 1]

X, ]
A= Xea,ij

Left-corner predict: A= XaeP, XeNUT

[A— aeXf,i0,j|[X, ], k|
[A— aXef, i,k

Complete:

[A— e, i,j]

Publish: —
[A, i, ]]

(This is actually a deduction-based version of left-corner parsing.)



CYK with dotted productions (4)

Example (without e-productions, left-corner parsing): S — ab | aSb

w = aabb
4 || S— aSbe
S
3|l S—aSeb
2 S — abe
S
1| a a bl|b
S—aeb S—aeb
S—aeSb | S—aeSh
|1 E [3]4]



CYK with dotted productions (5)

What about time complexity?
The most complex operation, complete, involves only three indices

i, j, k ranging from 0 to n:

[A— e XB,ijl[X, ),k
[A—)OéX’ﬁ,ivk]

Complete:

Consequently, the time complexity is O(n?), as in the CNF case.

But: the data structure required for representing a parse item with a
dotted production is slightly more complex that what is needed for
simple passive items.



Conclusion

m CYK is a non-directional bottom-up parser.
m If used with CNF, it is very efficient. Time complexity is O(n®).
m The transformation into CNF can be undone after parsing, i.e.,

we still have a parser for arbitrary CFGs (as long as € is not in
the language).

m Instead of explicitly binarizing, we can use dotted productions
and move through the righthand sides of productions step by
step from left to right, which also leads to O(n?).
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