Parsing
Cocke Younger Kasami (CYK)

Laura Kallmeyer

Heinrich-Heine-Universitit Diisseldorf

Winter 2017/18

A=
HEINRICH HEINE

UNIVERSITAT DUSSELDORF

Table of contents

© Introduction

© The recognizer

© The CNF recognizer

@ CYK parsing

© CYK with dotted productions

@ Bibliography

Introduction

The CYK parser is

m a bottom-up parser: we start with the terminals in the input
string and subsequently compute recognized parse trees by
going from already recognized rhs of productions to the non-
terminal on the lefthand side.

m a non-directional parser: the checking for recognized com-
ponents of a rhs in order to complete a lhs is not ordered; in
particular, we cannot complete only parts of a rhs, everything
in the rhs must be recognized in order to complete the lefthand
category.

Independently proposed by Cocke, Kasami and Younger in the 60s.

Cocke and Schwartz (1970); Grune and Jacobs (2008); Hopcroft and
Ullman (1979, 1994); Kasami (1965); Younger (1967)

The general recognizer (1)

We store the results in a (n + 1) x (n+ 1) chart (table) C such that
A€ Ci,l if A= Wi Wit]—1.
In other words,

m iis the index of the first terminal in the relevant substring of w;
i ranges from 1 to n + 1 (the latter for an empty word following
Wn)

m [is the length of the substring; ! ranges from 0 to n.
All fields in the chart are initialized with ().

The general recognizer (2)

General CYK recognizer (for arbitrary CFGs):

Cii:={w} for all 1<i<n scan
Cio:={A|A— €€ P} for all i€[l.n+1] e-productions
for all le€[0..n]:
for all i €l.n+1]:
repeat until chart does not change any more:
for every A— A;... Ag:
if there are I,...,It €[0..n] such that
L+---+L=1 and
Aje Cl“lj with ij: i1+ll"'+lj_1,
then G ;:= C; U{A} complete

it

The general recognizer (3)

S— ABC,A — aA|e, B— bB|¢e, C— c

wl: aabbbc.

6| S

5 S

4 S

3 B S

2| A B B S

1{aA | aA |bB |bB |bB | cC,S

0| AB|AB|AB | AB|AB | AB AB

It Tz [3 [« [5 e [7 [i

The general recognizer (4)

Parsing schema for CYK:
Items have three elements:

®m X € N U T: the nonterminal/terminal that spans a substring
Wi, ..., wj of w;
m the index i of the first terminal in the subsequence;

m the length [= j — i of the subsequence.
Item form: [X, i, [JwithX e NUT,i€ [l.n+1], 1€ [0..n].

The general recognizer (5)

Goal item: [S, 1, n].
Deduction rules:

Scan: m w; = da

e-productions: A—e€Pic[l.n+1]

[A,i,0]

[A17 ila ll]a e ey [Ak7 ik, lk] f:_zlA_:_ ﬁfli P,

[Aaibl] =i +h-+ L

Complete:

The general recognizer (6)

m Tabulation avoids problems with loops: nothing needs to be
computed more than once.

m In each complete step, we have to check for all Iy, . .., lx. This is
costly.

m Note, however, that we create a new chart entry (new item)
only for combinations of already recognized parse trees. (No
blind prediction as in Unger’s parser.)

m With unary rules and e-productions, an entry in field C;; can
be reused to compute a new entry in C; ;. This is why the re-
peat until chart does not change any more loop
is necessary.

The CNF recognizer (1)

A CFG is in Chomsky Normal Form iff all productions are either of
the form A — aor A — BC.
If the grammar has this form,

m we need to check only [, I; in a complete step, and

m we can be sure that to compute an entry in field C; ;, we do not
use another entry from field C; ;. Consequently, we do not need
the repeat until chart does not change any
more loop.

The CNF recognizer (2)

The chart C is now an n X n-chart.

Ci1:={A|A— w; € P} scan
for all le€[1.n]:
for all i€ [l.n]:
for every A— B C:
if there is a L €[1..l—1] such that
B e Ci,h and C e Ci+l1,l—l1 9
then C;;:=C;;U{A} complete

The CNF recognizer (3)

Parsing schema for CNF CYK:
Goal item: [S, 1, n]
Deduction rules:

Scan: WA%WIEP

[B,i, L], [C,i+ L, L]
{Aa iv ll + lZ]

Complete: A—BCeP

The CNF recognizer (4)

Example

S — C,Cp | C4Sp, S — SCp, C; — a,Cp — b. (From S — aSbh | ab
with transformation into CNF.)
w = aaabbb.

l

6| S

5 Sp

4 S

3 Sp

2 S

1| Ca | Ca|Cu|Cp|CplCy

3 4 5 6 i

a |a a |b |[b |Db

The CNF recognizer (5)

Time complexity: How many different instances of scan and complete
are possible?

Scan: m A— w, P cin
. [Ba ia ll]a [Ca i+ 117 12] 3
Complete: A LL T b A—BCeP con

Consequently, the time complexity of CYK for CNF is O(n?).

The space complexity of CYK is O(n?).

The CNF recognizer (6)

Control structures: there are two possible orders in which the chart

can be filled:

Q off-line order: fill first row 1, then row 2 etc.:
for all le[l.n]: (length)
for all ie[l.n—1+1]: (start position)
compute C;;
@ on-line order: fill one diagonal after the ather, starting with 1, 1
and proceeding from k, 1 to 1, k:
for all ke l.n: (end position)
for all le€[1.k: (length)
compute Ci_jy1,

The CNF recognizer (6)

© Soundness of the algorithm: If [A, i, [], then A = w; ... wir_1.

Proof via induction over deduction rules.

@ Completeness of the algorithm: If A = Wi ...Wi_1, then
[A, 4, 1].
Proof via induction over .

CYK parsing (1)

We know that for every CFG G with € ¢ L(G) we can

eliminate e-productions,

eliminate unary productions,

eliminate useless symbols,

transform into CNF,

and the resulting CFG G’ is such that L(G) = L(G).
Therefore, for every CFG, we can use the CNF recognizer after
transformation.

How can we obtain a parser?

CYK parsing (2)

We need to do two things:

m turn the CNF recognizer into a parser, and

m if the original grammar was not in CNF, retrieve the original
syntax from the CNF syntax.

CYK parsing (3)

To turn the CNF recognizer into a parser, we record not only
non-terminal categories but whole productions with the positions and
lenghts of the rhs symbols in the chart (i.e., with backpointers):

Ci71 = {A—> W1|A—> Wi EP}
for all lel.n]:
for all i€ [l.n:
for every A— B C:
if there is a I €[1.l1—1] such that
B e Ci,ll and Ce€ Ci-i-ll,l—ll 5
then Ci;:=C;U{A— [B,i,L][C,i+L,]— L]}

We can then obtain a parse tree by traversing the productions from
left to right, starting with every S-production in Cy .

CYK parsing (4)

S — C,Cy | C4Sp, S — SCp, C; — a,Cp — b, w = aaabbb. (We

write A;; for [A, ,1].)

S —
Cal,ISBZ,S
SB —
52,4Crs 1
S —
Caz,ISBS 3
Sg —
53,2Cb5,1
S —
Ca3,1Cb4,1
C,—a C,—a C,—a Co—b| C,—b| C,—Db

20/35

CYK parsing (5)

From the CNF parse tree to the original parse tree:
First, we undo the CNF transformation:

m replace every C, — ain the chart with a and replace every
occurrence of C, in a production with a.

m Forall ;i € [1.n]: If A — aD,, j, € C;;such that D is a new
symbol introduced in the CNF transformation and D — 8 €
C then replace A — aDj, ;, with A — afin Cj;.

m Finally remove all D — ~ with D being a new symbol intro-
duced in the CNF transformation from the chart.

ip,Ip>

CYK parsing (6)

S — C,Cp | C4Sp, S — SCp, Cs — a,Cp — b, w = aaabbb. New
symbols: C,, Cp, Sp. Elimination of C,, Cp:

6 S—)aSst

5 SB_>SZ,4b

4 S—>aSB33

3 SB—)S3’2b

2 S — ab

11 a a a b|b|b
1 2 3 [4]5]6]

22/35

CYK parsing (7)

S — C,Cp| CySp, S5 — SCy,Cy — a,Cp — b, w = aaabbb.

Replacing of Sg in rhs:
6 S — a52’4b
5 Sg — SgAb
4 S — aS372b
3 Sg — Sg’gb
2 S — ab
1| a a a b|bl|b

CYK parsing (8)

S — C,Gy | CaSB, Sg — SCb, C, — a, Cp — b, w = aaabbb.
Elimination of Sg:
6 S — a52,4b

S — (153’2b

=N WUl

CYK parsing (9)

Undo the elimination of unary productions:

m For every A — (3 in C;; that has been added in removing of
the unary productions to replace B — ' (3’ is 8 without chart
indices): replace A with B in this entry in C; .

m For every unary production A — B in the original grammar
and for every B — 3 € C;;: add A — B;; to C;;. Repeat this
until chart does not change any more.

CYK parsing (10)

Undo the elimination of e-productions:

m Add arow with [= 0 and a column with i = n + 1 to the chart.

m Fill row 0 as in the general case using the original CFG gram-
mar (tabulating productions).

m For every A — [3in C;; that has been added in removing
the e-productions: add the deleted nonterminals to 8 with the
position of the preceding non-terminal as starting position (or i
if it is the first in the rhs) and with length 0.

CYK parsing (11)

Terminal Filter: Observation: Information on the obligatory presence
of terminals might get lost in the CNF transformation:

S — aSb (requires an g, an S and a b) ~ S — C,Sp (requires an a and
an S and a b) and Sg — SC}, (requires an S and a b)

Consider an input babb:

m In a CYK parser with the orignal grammar, we would derive
[S,2,2] and [b, 4, 1] but we could not apply S — aSb.

m In the CNF grammar, we would have [S, 2, 2] and [Cp, 4, 1] and
then we could apply Sg — SC}, and obtain [Sg, 2, 3] even though
the only way to continue with Sp in a rhs is with S — C,Sp
which is not possible since the first terminal is not an a.

CYK parsing (12)

Solution: add an additional check:

m Every new non-terminal D introduced for binarization stands
(deterministically) for some substring (5 of a rhs af.
Ex: S in our sample grammar stands for Sb.

m Every terminal in this rhs to the left of 3, i.e., evey terminal in
o must necessarily be present to the left for a deduction of a D
that leads to a goal item.

Ex: Sp can only lead to a goal item if to its left we have an a.

m Terminal Filter: During CNF transformation, for every non-
terminal D introduced for binarization, record the sets of termi-
nals in the rhs to the left of the part covered by D.

During parsing, check for the presence of these terminals to the
left of the deduced D item.

CYK with dotted productions (1)

CNF leads to a binarization: In each completion, only two items are
combined.
Such a binarization can be obtained by using dotted productions:

m We process the rhs of a production from left to right.

m In each complete step, a production A — « e X3 is combined
with an X whose span starts at the end of the a-span. The
result is a production A — aX e (3.

m We start with the completed terminals and their spans.

Note that this version of CYK is directional.

CYK with dotted productions (2)

Parsing schema for the general version (allowing also for
g-productions):

Goal items: [S — «e, 0, n] for all S-productions S — «.

Deduction rules:

Predict (axioms): A— aePi€|0..n]

) [A— aeaf,i,j B
Sean: [A— aaef,ij+1] Wit1 = a
Complete: [A — a e Bf, l,_]] [B — ve, j, k]

[A— aBe f,i, k]

CYK with dotted productions (3)

Parsing schema including passive items (just a non-terminal or
terminal, no dotted production) and assuming an e-free CFG:

Goal item: [S, 0, n]

Deduction rules:

Scan (axioms): Wil = a

la,i,i+ 1]

X,]
A= Xea,ij

Left-corner predict: A= XaeP, XeNUT

[A— aeXf,i0,j|[X,], k|
[A— aXef, i,k

Complete:

[A— e, i,j]

Publish: —
[A, i,]]

(This is actually a deduction-based version of left-corner parsing.)

CYK with dotted productions (4)

Example (without e-productions, left-corner parsing): S — ab | aSb

w = aabb
4 || S— aSbe
S
3|l S—aSeb
2 S — abe
S
1| a a bl|b
S—aeb S—aeb
S—aeSb | S—aeSh
|1 E [3]4]

CYK with dotted productions (5)

What about time complexity?
The most complex operation, complete, involves only three indices

i, j, k ranging from 0 to n:

[A— e XB,ijl[X,),k
[A—)OéX’ﬁ,ivk]

Complete:

Consequently, the time complexity is O(n?), as in the CNF case.

But: the data structure required for representing a parse item with a
dotted production is slightly more complex that what is needed for
simple passive items.

Conclusion

m CYK is a non-directional bottom-up parser.
m If used with CNF, it is very efficient. Time complexity is O(n®).
m The transformation into CNF can be undone after parsing, i.e.,

we still have a parser for arbitrary CFGs (as long as € is not in
the language).

m Instead of explicitly binarizing, we can use dotted productions
and move through the righthand sides of productions step by
step from left to right, which also leads to O(n?).

Bibliography

Cocke, J. and Schwartz, J. T. (1970). Programming languages and their
compilers: Preliminary notes. Technical report, CIMS, NYU. 2nd revised
edition.

Grune, D. and Jacobs, C. (2008). Parsing Techniques. A Practical Guide.
Monographs in Computer Science. Springer. Second Edition.

Hopcroft, J. E. and Ullman, J. D. (1979). Introduction to Automata Theory,
Languages and Computation. Addison Wesley.

Hopcroft, J. E. and Ullman, J. D. (1994). Einfithrung in die Automatentheorie,
Formale Sprachen und Komplexititstheorie. Addison Wesley, 3. edition.
Kasami, T. (1965). An efficient recognition and syntax-analysis algorithm for

context-free languages. Technical report, AFCRL.

Younger, D. H. (1967). Recognition and parsing of context-free languages in
time n®. Inform. Control, 10(2):189-20.

	Introduction
	The recognizer
	The CNF recognizer
	CYK parsing
	CYK with dotted productions
	Bibliography

