Parsing
Context-Free Grammars (CFG)

Laura Kallmeyer
Heinrich-Heine-Universitit Diisseldorf

Summer 2019

HEINRICH HEINE

UNIVERSITAT DUSSELDORF

Table of contents

@ Context-Free Grammars

© Simplifying CFGs
@ Removing useless symbols
o Eliminating e-rules
@ Removing unary rules

© CFG normal forms
@ Chomsky Normal Form
@ Greibach Normal Form

Grammar Formalisms (again)

Type 1/2/3 grammars

A type 0 grammar is called

m context-sensitive (or of type 1) if for all productions o« — £,
|a| < |B| holds. The only exception is S — ¢ which is allowed
if S does not appear in any righthand side.

m context-free (or of type 2) if for all productions « — 3, a €
N.

m regular (or of type 3) if for all productions @ — 3, &« € N and
B €T orB=B'Xwith 3 € T*, X € N.

The type 1/2/3 languages are the languages generated by the
corresponding grammars.

The hierarchy of the type 0, 1, 2 and 3 languages is called the
Chomsky Hierarchy.

Grammar Formalisms (again)

Type 3 grammar

Grammar for L(das (rote|griine)* Auto (von Otto| €))

NP — Det N1 N1 — rote N1 N1 — griine N1 N1 — Auto
N1 — AutoPP PP — vonN2 N2 — Otto

Type 2 grammar

Grammar for {a"b™(cd)"d | n,m > 0}

S—Td T—aTed T—U U—=bU U—e

Type 1 grammar

Grammar for {a"b"c" | n > 1}

S—-TE T—aTB T-—>e¢ B—bC
Cb—-bC CE—Ec bE—Db

CFG

CFG

A context-free grammar (CFG) is a tuple G = (N, T, P, S) such
that:

m N and T are disjoint alphabets, the nonterminals and terminals
m S € N is the start symbol

m P is a set of productions of the form A — fwith A € N, 3 €
(NUT)*

Any 3 € (N U T)* with S = S s called a sentential form.

CFG

CFG parse tree

A tree t is a parse tree fora CFG G = (N, T, P, S) iff
m each node in ¢ is labeled withan « € NU T U {¢}
m the root label is S

m if there is a node with label A that has n daughters labeled
(from left to right) o, ..., then A — oy ...y € P

m if a node has label ¢, it is a leaf and the unique daughter of its
mother node

S = B in G iff there is a parse tree for G with yield §.

CFG

Languages generated by a CFG

Let G= (N, T,P,S) be a CFG
m The tree language is the set of all parse trees with root label S
and all leaves labelled with a € T U {¢}.

= The string language L(G) of G is the set {w € T*|S = w}
where

Q forw,w € (NUT)*: w= w iff thereisa A — [€ P and there
are v, u € (N U T)* such that w = vAu and w' = vSu.

@ = is the reflexive transitive closure of =

m A derivation of a word w € T™ is a sequence
S=>=a=>a=>--=>w

of derivation steps leading to w.

CFG

For a single parse tree, there might be more than one corresponding
derivation.
Derivations

CFG G, = ({S, A, B}, {a, b}, P, S) with productions
S— AB|BA A—»a|aS|bAA B— b|bS|aBB

(This CFG generates the language {w € {a, b} | |w|, = |w|p}.)
Input w = ab.

The two derivations for w are
S= AB=aB=aband S = AB = Ab= ab

(|w|a gives the number of occurrences of a in w.)

CFG

Leftmost and rightmost derivations

A derivation is called a

m leftmost derivation iff, in each derivation step, a production
is applied to the leftmost non-terminal of the already derived
sentential form

m rightmost derivation iff, in each derivation step, a production
is applied to the rightmost non-terminal of the already derived
sentential form

In the preceding example, the first derivation was a leftmost
derivation and the second a rightmost derivation.

CFG

For a single word w, there might even be more than one parse tree.

Ambiguous grammars

A CFG giving more than one parse tree for some word w is called
ambiguous.

Ambiguous grammar

Consider again G, (S — AB|BA, A — a|aS| bAA, B— b| bS| aBB)

The two parse trees A A
for aabb are A 5 A 5
|

LAy Oy

B B
| /\
b b

2
o — 9

10/27

CFG

Some languages are such that their structure is necessarily ambiguous.
Natural languages are probably such cases.

Inherently ambiguous

A CFL L is called inherently ambiguous if each CFG G with L =
L(G) is ambiguous.

Inherently ambiguous language

L={a"b"c¢"d"|n>1,m>1}U{ad"b"c"d"|n>1,m> 1}

For words of the form afb¥ckd* one cannot tell wich of the two
patterns is the right structure. Both are possible.

Removing useless symbols

An important grammar clean-up one has to do sometimes is the
removal of symbols (non-terminals or terminals) that cannot occur in
any derivation of a word in the string language.

Useful/useless symbols
Let G = (N, T, P, S) be a CFG. An X € N U T is called
m useful if there is a derivation S = aX3 = w with w € T*

m useless otherwise

Removing useless symbols

m Non-terminals X can be useless because they do not allow to
derive a terminal string, i.e., there is no derivation X = wwith
we T

m Non-terminals and terminals X can be useless because they
cannot be reached from the start symbol, i.e., there is no deriva-
tion S = aX.

Useless symbols

Q@ G={{S,AB,C},{ab,c},P,S) with
P={S— AB|aS,A — aaAc|c,B— aCc}
Useless: B and C since from them one cannot derive any termi-
nal string.
Q@ G=({S,A B, C} {ab,c},P,S) with
P={S— AB|aS,A — aaAc|c,B— ac,C — b}
Useless: C and b since they are not reachable from S.

Removing useless symbols

To eliminate all useless symbols, two things need to be done.

@ All X € N need to be eliminated that cannot lead to a terminal
sequence.
This can be done recursively: Starting from the terminals and
following the productions from right to left, the set of all sym-
bols leading to terminals can be computed recursively.
Productions containing symbols that are not in this set are
eliminated.

@ In the resulting CFG, the unreachable symbols need to be elimi-
nated.
This is done starting from S and applying productions. Each
time, the symbols from the right-hand sides are added.
Again, productions containing non-terminals or terminals that
are not in the set are eliminated.

Eliminating e-rules

Let G= (N, T,P,S). A production of the form A — ¢ is called an
e-production.

The following holds:

For each CFG G, there is a CFG G’ without e-productions such that

L(G) = L(G) \ {e}.

Removing e-productions

G = <{S7 T}7 {a7 b’ c’ d}7P7 S> With
P={S— aSb|aTbh, T — cTd|c}

Equivalent e-free CFG:
G=({S,T},{a,b,c,d},P,S) with
P={S— aSb|aTb|ab, T — cTd| cd}

Eliminating e-rules

In order to eliminate e-productions, we

m Compute the set N, = {A| A = ¢} recursively
O N.={AeN|A=¢}
Q Forall AwithA — a,a € N}:add Ato N;
© Repeat 2. until N; does not change any more
m Delete the e-productions and for each A — X; ... X
add all productions one can obtain by deleting some X; € N;
from the right-hand side as long as one does not delete all
X1, X

Removing unary rules

Let G= (N, T,P,S). For A,B € N, a production of the form A — Bis
called a unary production

For each CFL that does not contain e-rules, a CFG without unary
productions can be found.

Removing unary rules
G=({{S,T},{a,b,c,d},P,S)withP ={S— aSb|T,T — cTd| cd}

Equivalent CFG without unary rules: G = ({S, T}, {a, b, ¢,d}, P, S)
with P = {S — aSb|cTd | cd, T — ¢Td | cd}

Elimination of unary productions for a CFG without e-productions:

Q Forall A= BandallB— 3,8 ¢ N:
add A — [to the set of productions

@ Delete all unary productions

Chomsky Normal Form

A normal form of a grammar formalism F is a further restriction on

the grammars in F that does not affect the set of generated string
languages.

There are two important normal forms for CFGs.

CFG normal forms

A CFG G = (N, T,P,S) for alanguage without e-rules is

© in Chomsky normal form iff all productions have either the
form A — BCor A — awith A,B,C € N,ae T

@ in Greibach normal form iff all productions have the form
A — aawitha e T,a € N*

Chomsky Normal Form

For each CFL L without ¢, there is a CFG in Chomsky normal form
with L = L(G).

Construction of an equivalent CFG in CNF for a given CFG
G=(N,T,P,S)

Eliminate useless symbols

Eliminate e-productions

Eliminate unary productions

©0 00

For each a € T: introduce new non-terminal T,, replace a by
T, in all right-hand sides of length > 1 and add production
T, > atoP

©

For each production A — By ... B, introduce new non-terminals
Xi, ..., Xn—1 and replace production A — By . .. B, with

A — ByX; X1 — B X, c. Xn_1 — B,_1B,

Chomsky Normal Form

/\

| /\ | / \

20/ 27

Chomsky Normal Form

Transformation to CNF

G=({{S,C},{a,b,c,},{S— aSbC|ab,C — c|cC},S).

@ Introducing new preterminals:
G = ({S,C},{a,b,c,},P,S) with productions
S — T,STyC| T,Ty,C — ¢| T.C, T, — a, Ty — b, T. — ¢

© Binarization:
G = ({S,C},{a,b,c,},P,S) with productions
S — T,X | T, Ty, X; — SXz, X — T,C,C — ¢| T.C,
T,—aT,— b T, —c

21/27

Greibach Normal Form

For each CFL L without ¢, there is a CFG in Greibach normal form
with L = L(G).

Construction of the CFG in GNF for a given CFG G = (N, T, P, S)
@ Eliminate useless symbols
@ Eliminate unary productions
@ Eliminate e-productions
@ Left-recursion is eliminated, i.e., a grammar is constructed that

does not allow derivations of the form A §> Ax

Greibach Normal Form

Elimination of left-recursion

m Assume the set of non-terminals to be ordered, i.e. N = {Ay, ..

m Construct a CFG with j > iif A; — Ajy:

@

For all A;, 1 < i < m, steps (I) and (IT) are done.

Transformation such that j > iif A; — Ajy:

Replace all productions A; — Ajy with j < i with new pro-
ductions obtained from replacing A; with all right-hand sides
of Aj-productions. Do this until the condition holds for all A;-
productions.

- Am}

Greibach Normal Form

(I) Elimination of left-recursive productions A; — A;a:
Add a new non-terminal B and replace
Ai—>AiOL1, PN Ai—)AiOér, Ai—>ﬁla e Ai—>ﬁs

with
A — Bi, Ai— BB Vi, 1<i<s

and
B—aj, B>aoB Vi,1<i<r

(Left recursion is turned into right recursion)

In the resulting grammar, for all A; = Aja, i < jholds.

Greibach Normal Form

Transformation to GNF

G= <N7 T7P75>7 N = {A17A27A3aB}a T= {aa b}

AL — AA; Ay — AsAg | b A; — A1A; ‘ a

A — AyAs Ay — A3A; | b Az — AyA3A; | a

Al — A2A3 Az — A3A1 | b A3 — A3A1A3A2 | bA3A2 | a
Replace A3 — A3A1A3A2 ‘ bA3A2 ’ a by

A3 = bA3A2 A3 — a A3 = bA3A2B A3 — aB

B— A1A3A2 B — A1A3AzB

The resulting grammar does not allow left-recursive derivations.

Greibach Normal Form

Lexicalization
m Now, two more steps are necessary to obtain the grammar in
GNF:
@ Fori = m—1toi = 1:Replace all A; — A;3 with all pro-
ductions obtained by replacing A; with the right-hand side of a
Aj-production

Then, do the same for all B-productions where B is one of the
symbols introduced in step (II)

@ For all productions A — «afl, @ # e: replace a with a new
non-terminal T, and add a production T, — ato P.

Greibach Normal Form

Transformation to GNF (cont’d)

Al — A)As

Ay — AsA; | b

A; — bA3A2 | a| bA3AzB’ aB
B — AA3A, |A1A3A2B

Replace

Q A, — A3A by
Ay — bA3A2A1 ’ aA; ’ bA?,AzBAl ‘ aBA;

Q A — A2A3 by

A — bA3A2A1A3 ’ ce ’ aBA{As ‘ bAg
Q@ B— AA3A, by
B— bA3A2A1A3A3A2 | coo | bA3A3A2

Q B—~ A1A3AzB by
B — bA3A2A1A3A3A2B’ 000 ’ bA3A3A2B

	Context-Free Grammars
	Simplifying CFGs
	Removing useless symbols
	Eliminating -rules
	Removing unary rules

	CFG normal forms
	Chomsky Normal Form
	Greibach Normal Form

