
Parsing
Context-Free Grammars (CFG)

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Summer 2019

1 / 27

Table of contents

1 Context-Free Grammars

2 Simplifying CFGs
Removing useless symbols
Eliminating ε-rules
Removing unary rules

3 CFG normal forms
Chomsky Normal Form
Greibach Normal Form

2 / 27

Grammar Formalisms (again)

Type 1/2/3 grammars
A type 0 grammar is called

context-sensitive (or of type 1) if for all productions α → β,
|α| ≤ |β| holds. �e only exception is S → ε which is allowed
if S does not appear in any righthand side.
context-free (or of type 2) if for all productions α → β, α ∈
N .
regular (or of type 3) if for all productions α→ β, α ∈ N and
β ∈ T∗ or β = β′X with β′ ∈ T∗, X ∈ N .

�e type 1/2/3 languages are the languages generated by the
corresponding grammars.

�e hierarchy of the type 0, 1, 2 and 3 languages is called the
Chomsky Hierarchy.

3 / 27

Grammar Formalisms (again)

Type 3 grammar
Grammar for L(das (rote|grüne)∗ Auto (von O�o| ε))

NP→ Det N1 N1→ rote N1 N1→ grüne N1 N1→ Auto
N1→ Auto PP PP→ von N2 N2→ O�o

Type 2 grammar
Grammar for {anbm(cd)nd | n,m ≥ 0}

S→ T d T→ a T cd T→ U U→ b U U→ ε

Type 1 grammar
Grammar for {anbncn | n ≥ 1}

S→ T E T→ a T B T→ ε B→ b C
C b→ b C C E→ E c b E→ b

4 / 27

CFG

CFG
A context-free grammar (CFG) is a tuple G = 〈N , T , P, S〉 such
that:

N and T are disjoint alphabets, the nonterminals and terminals
S ∈ N is the start symbol
P is a set of productions of the form A → β with A ∈ N , β ∈
(N ∪ T)∗

Any β ∈ (N ∪ T)∗ with S ∗⇒ β is called a sentential form.

5 / 27

CFG

CFG parse tree
A tree t is a parse tree for a CFG G = 〈N , T , P, S〉 i�

each node in t is labeled with an α ∈ N ∪ T ∪ {ε}
the root label is S
if there is a node with label A that has n daughters labeled
(from le� to right) α1, . . . , αn, then A→ α1 . . . αn ∈ P

if a node has label ε, it is a leaf and the unique daughter of its
mother node

S ∗⇒ β in G i� there is a parse tree for G with yield β.

6 / 27

CFG

Languages generated by a CFG
Let G = 〈N , T , P, S〉 be a CFG

�e tree language is the set of all parse trees with root label S
and all leaves labelled with a ∈ T ∪ {ε}.
�e string language L(G) of G is the set {w ∈ T∗ | S ∗⇒ w}
where

1 for w,w′ ∈ (N ∪ T)∗: w ⇒ w′ i� there is a A→ β ∈ P and there
are v, u ∈ (N ∪ T)∗ such that w = vAu and w′ = vβu.

2
∗⇒ is the re�exive transitive closure of⇒.

A derivation of a word w ∈ T∗ is a sequence

S ⇒ α1 ⇒ α2 ⇒ · · · ⇒ w

of derivation steps leading to w.

7 / 27

CFG

For a single parse tree, there might be more than one corresponding
derivation.

Derivations
CFG Ga,b = 〈{S,A,B}, {a, b}, P, S〉 with productions

S → AB |BA A→ a | aS | bAA B→ b | bS | aBB

(�is CFG generates the language {w ∈ {a, b}+ | |w|a = |w|b}.)

Input w = ab.

�e two derivations for w are
S ⇒ AB⇒ aB⇒ ab and S ⇒ AB⇒ Ab⇒ ab

(|w|a gives the number of occurrences of a in w.)

8 / 27

CFG

Le�most and rightmost derivations
A derivation is called a

le�most derivation i�, in each derivation step, a production
is applied to the le�most non-terminal of the already derived
sentential form

rightmost derivation i�, in each derivation step, a production
is applied to the rightmost non-terminal of the already derived
sentential form

In the preceding example, the �rst derivation was a le�most
derivation and the second a rightmost derivation.

9 / 27

CFG

For a single word w, there might even be more than one parse tree.

Ambiguous grammars
A CFG giving more than one parse tree for some word w is called
ambiguous.

Ambiguous grammar
Consider again Ga,b (S → AB |BA, A→ a | aS | bAA, B→ b | bS | aBB)

�e two parse trees
for aabb are

S

B

B

b

B

b

a

A

a

S

B

b

A

S

B

b

A

a

a

10 / 27

CFG

Some languages are such that their structure is necessarily ambiguous.
Natural languages are probably such cases.

Inherently ambiguous
A CFL L is called inherently ambiguous if each CFG G with L =
L(G) is ambiguous.

Inherently ambiguous language

L = {anbncmdm | n ≥ 1,m ≥ 1} ∪ {anbmcmdn | n ≥ 1,m ≥ 1}

For words of the form akbkckdk one cannot tell wich of the two
pa�erns is the right structure. Both are possible.

11 / 27

Removing useless symbols

An important grammar clean-up one has to do sometimes is the
removal of symbols (non-terminals or terminals) that cannot occur in
any derivation of a word in the string language.

Useful/useless symbols
Let G = 〈N , T , P, S〉 be a CFG. An X ∈ N ∪ T is called

useful if there is a derivation S ∗⇒ αXβ ∗⇒ w with w ∈ T∗

useless otherwise

12 / 27

Removing useless symbols

Non-terminals X can be useless because they do not allow to
derive a terminal string, i.e., there is no derivation X ∗⇒ w with
w ∈ T∗.
Non-terminals and terminals X can be useless because they
cannot be reached from the start symbol, i.e., there is no deriva-
tion S ∗⇒ αX .

Useless symbols
1 G = 〈{S,A,B,C}, {a, b, c}, P, S〉 with

P = {S → AB | aS,A→ aaAc | c,B→ aCc}
Useless: B and C since from them one cannot derive any termi-
nal string.

2 G = 〈{S,A,B,C}, {a, b, c}, P, S〉 with
P = {S → AB | aS,A→ aaAc | c,B→ ac,C → b}
Useless: C and b since they are not reachable from S.

13 / 27

Removing useless symbols

To eliminate all useless symbols, two things need to be done.
1 All X ∈ N need to be eliminated that cannot lead to a terminal

sequence.
�is can be done recursively: Starting from the terminals and
following the productions from right to le�, the set of all sym-
bols leading to terminals can be computed recursively.
Productions containing symbols that are not in this set are
eliminated.

2 In the resulting CFG, the unreachable symbols need to be elimi-
nated.
�is is done starting from S and applying productions. Each
time, the symbols from the right-hand sides are added.
Again, productions containing non-terminals or terminals that
are not in the set are eliminated.

14 / 27

Eliminating ε-rules

Let G = 〈N , T , P, S〉. A production of the form A→ ε is called an
ε-production.

�e following holds:

For each CFG G, there is a CFG G′ without ε-productions such that
L(G′) = L(G) \ {ε}.

Removing ε-productions
G = 〈{S, T}, {a, b, c, d}, P, S〉 with
P = {S → aSb | aTb, T → cTd | ε}

Equivalent ε-free CFG:
G = 〈{S, T}, {a, b, c, d}, P, S〉 with
P = {S → aSb | aTb | ab, T → cTd | cd}

15 / 27

Eliminating ε-rules

In order to eliminate ε-productions, we
Compute the set Nε = {A |A

∗⇒ ε} recursively
1 Nε := {A ∈ N |A⇒ ε}
2 For all A with A→ α, α ∈ N∗ε : add A to Nε

3 Repeat 2. until Nε does not change any more

Delete the ε-productions and for each A→ X1 . . .Xn:
add all productions one can obtain by deleting some Xj ∈ Nε

from the right-hand side as long as one does not delete all
X1, . . . ,Xn.

16 / 27

Removing unary rules

Let G = 〈N , T , P, S〉. For A, B ∈ N , a production of the form A→ B is
called a unary production

For each CFL that does not contain ε-rules, a CFG without unary
productions can be found.

Removing unary rules
G = 〈{S, T}, {a, b, c, d}, P, S〉 with P = {S → aSb | T , T → cTd | cd}

Equivalent CFG without unary rules: G = 〈{S, T}, {a, b, c, d}, P, S〉
with P = {S → aSb | cTd | cd, T → cTd | cd}

Elimination of unary productions for a CFG without ε-productions:
1 For all A ∗⇒ B and all B→ β, β /∈ N :

add A→ β to the set of productions
2 Delete all unary productions

17 / 27

Chomsky Normal Form

A normal form of a grammar formalism F is a further restriction on
the grammars in F that does not a�ect the set of generated string
languages.

�ere are two important normal forms for CFGs.

CFG normal forms
A CFG G = 〈N , T , P, S〉 for a language without ε-rules is

1 in Chomsky normal form i� all productions have either the
form A→ BC or A→ a with A,B,C ∈ N , a ∈ T

2 in Greibach normal form i� all productions have the form
A→ aα with a ∈ T , α ∈ N ∗

18 / 27

Chomsky Normal Form

For each CFL L without ε, there is a CFG in Chomsky normal form
with L = L(G).

Construction of an equivalent CFG in CNF for a given CFG
G = 〈N , T , P, S〉

1 Eliminate useless symbols
2 Eliminate ε-productions
3 Eliminate unary productions
4 For each a ∈ T : introduce new non-terminal Ta, replace a by

Ta in all right-hand sides of length > 1 and add production
Ta → a to P

5 For each production A→ B0 . . . Bn introduce new non-terminals
X1, . . . ,Xn−1 and replace production A→ B0 . . .Bn with

A→ B0X1 X1 → B1X2 . . . Xn−1 → Bn−1Bn

19 / 27

Chomsky Normal Form

B0 . . . Bn

A

;

B0

B1 X2

X1

A

Xn−1

Bn−1 Bn

20 / 27

Chomsky Normal Form

Transformation to CNF
G = 〈{S,C}, {a, b, c, }, {S → aSbC | ab,C → c | cC}, S〉.

1 Introducing new preterminals:
G = 〈{S,C}, {a, b, c, }, P, S〉 with productions
S → TaSTbC | TaTb,C → c | TcC, Ta → a, Tb → b, Tc → c

2 Binarization:
G = 〈{S,C}, {a, b, c, }, P, S〉 with productions
S → TaX1 | TaTb,X1 → SX2,X2 → TbC,C → c | TcC,

Ta → a, Tb → b, Tc → c

21 / 27

Greibach Normal Form

For each CFL L without ε, there is a CFG in Greibach normal form
with L = L(G).

Construction of the CFG in GNF for a given CFG G = 〈N , T , P, S〉
1 Eliminate useless symbols
2 Eliminate unary productions
3 Eliminate ε-productions
4 Le�-recursion is eliminated, i.e., a grammar is constructed that

does not allow derivations of the form A +⇒ Aα

22 / 27

Greibach Normal Form

Elimination of le�-recursion
Assume the set of non-terminals to be ordered, i.e. N = {A1, . . . ,Am}
Construct a CFG with j > i if Ai → Ajγ:

For all Ai, 1 ≤ i ≤ m, steps (I) and (II) are done.

(I) Transformation such that j ≥ i if Ai → Ajγ:

Replace all productions Ai → Ajγ with j < i with new pro-
ductions obtained from replacing Aj with all right-hand sides
of Aj-productions. Do this until the condition holds for all Ai-
productions.

23 / 27

Greibach Normal Form

(II) Elimination of le�-recursive productions Ai → Aiα:

Add a new non-terminal B and replace

Ai → Aiα1, . . . , Ai → Aiαr , Ai → β1, . . . , Ai → βs

with
Ai → βi, Ai → βiB ∀i, 1 ≤ i ≤ s

and
B→ αi, B→ αiB ∀i, 1 ≤ i ≤ r

(Le� recursion is turned into right recursion)

In the resulting grammar, for all Ai
+⇒ Ajα, i < j holds.

24 / 27

Greibach Normal Form

Transformation to GNF
G = 〈N , T , P, S〉, N = {A1,A2,A3,B}, T = {a, b}

A1 → A2A3 A2 → A3A1 | b A3 → A1A2 | a
A1 → A2A3 A2 → A3A1 | b A3 → A2A3A2 | a
A1 → A2A3 A2 → A3A1 | b A3 → A3A1A3A2 | bA3A2 | a

Replace A3 → A3A1A3A2 | bA3A2 | a by

A3 → bA3A2 A3 → a A3 → bA3A2B A3 → aB
B→ A1A3A2 B→ A1A3A2B

�e resulting grammar does not allow le�-recursive derivations.

25 / 27

Greibach Normal Form

Lexicalization
Now, two more steps are necessary to obtain the grammar in
GNF:

5 For i = m − 1 to i = 1: Replace all Ai → Ajβ with all pro-
ductions obtained by replacing Aj with the right-hand side of a
Aj-production

�en, do the same for all B-productions where B is one of the
symbols introduced in step (II)

6 For all productions A → αaβ, α 6= ε: replace a with a new
non-terminal Ta and add a production Ta → a to P .

26 / 27

Greibach Normal Form

Transformation to GNF (cont’d)

A1 → A2A3
A2 → A3A1 | b
A3 → bA3A2 | a | bA3A2B | aB
B→ A1A3A2 |A1A3A2B

Replace

1 A2 → A3A1 by
A2 → bA3A2A1 | aA1 | bA3A2BA1 | aBA1

2 A1 → A2A3 by
A1 → bA3A2A1A3 | . . . | aBA1A3 | bA3

3 B→ A1A3A2 by
B→ bA3A2A1A3A3A2 | . . . | bA3A3A2

4 B→ A1A3A2B by
B→ bA3A2A1A3A3A2B | . . . | bA3A3A2B

27 / 27

	Context-Free Grammars
	Simplifying CFGs
	Removing useless symbols
	Eliminating -rules
	Removing unary rules

	CFG normal forms
	Chomsky Normal Form
	Greibach Normal Form

