
Parsing
A∗ Parsing

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Winter 2017/18

1 / 27



Table of contents

1 Introduction

2 A∗ parsing

3 Computation of the SX estimates

4 Parsing with the SX estimate

5 Summary of A∗ parsing

6 k-best parsing

2 / 27



Introduction (1)

Idea of weighted deductive parsing (Nederhof, 2003):

Give a deductive de�nition of the probability of a parse tree.
Use Knuth’s algorithm to compute the best parse tree for cate-
gory S and a given input w.

Idea of A∗ parsing (Klein & Manning, 2003): Incorporate an estimate
of the outside viterbi score of the parse items into the weights in
order to reduce the number of generated items.

Advantage:

Yields the best parse without exhaustive parsing.
Weights are more precise than only inside viterbi scores, there-
fore less items are produced.

3 / 27



Introduction (2)

Extension of a deductive parsing system to a weighted deduction
system:

Each item has an additional weight. Intuition: weight = costs
to build an item.
�e deduction rules specify how to compute the weight of the
consequent item form the weights of the antecedent items.

Example (CYK) with probability of best parse tree (inside viterbi
score) for every item:

Scan: |log(p)| : [A, i − 1, i] p : A→ wi

Complete: x1 : [B, i, j], x2 : [C, j, k]
x1 + x2 + |log(p)| : [A, i, k]

p : A→ B C

4 / 27



A∗ parsing (1)

Shortcoming:

�e weight of an item [X , i, j] is based only on the probability
of its parse tree, i.e., on its inside viterbi score.

X

wi+1 wj

Shorter derivations are o�en preferred (even if they do not lead
to the best parse).
Sometimes the gain arising from the reduction of the item
number is less than the costs of the management of the priority
queue.

Solution: Incorporate an estimate of the outside viterbi score in the
weights (A∗ parsing, Klein & Manning, 2003).

5 / 27



A∗ parsing (2)

Outside viterbi score of [X , i, j]: maximal probability of parse tree
with root S and leaves w1 · · ·wiXwj+1 · · ·wn:

S

X

w1 wi wj+1 wn

X

6 / 27



A∗ parsing (3)

Di�erent context summary estimates for [X , i, j]:

SX: maximal probability of a parse tree with root S, a leaf X
and i terminal leaves to the le� and n− j terminal leaves to the
right of X .

S

X

? . . . ? ? . . . ?
0 i j n

X

7 / 27



A∗ parsing (4)

More lexicalized estimates:
SXL: extends SX, estimate depends also on �rst terminal (o�en
�rst POS tag) to the le� of X. S

X

? . . . wi ? . . . ?
0 i j n

X

SXLR: extends SXL, estimate depends also on �rst terminal/POS
tag to the right of X. S

X

? . . . wi wj+1. . . ?
0 i j n

X

8 / 27



A∗ parsing (5)

Priority (= weight) of an item: inside weight + estimated outside
weight.

Conditions that ensure that the best parse gets found:

�e estimate must be admissible, i.e., it must not underestimate
the actual probability required to complete the parse.
It must be monotonic, i.e., when applying a rule, the priority
never decreases.

Savings in the number of items for di�erent estimates (Klein &
Manning, 2003):

NULL 11.2%
SX 80.3%
SXL 83.5%

9 / 27



Computation of the SX estimates (1)

�e SX estimates are precompiled, up to a certain maximal sentence
length nmax :

For every non-terminal A, every possible sentence length n ≤ nmax ,
every possible number nl of terminals to the le� of the span of A and
every possible number nr of terminals to the right of the span of A,
and for l = n− (nl + nr) we precompute

outside(A, nl, l, nr)

In this case, the span of A starts with the (nl + 1)th input symbol and
ends with the n− nr th input symbol.

Note that outside(A, nl, l, nr) is not an estimate of the outside
probability of an A with span from wnl+1 to wn−nr (this would require
a sum over all possible parse trees) but it is an estimate of the
probability of the best outside parse tree.

10 / 27



Computation of the SX estimates (2)

We need an estimate of the inside score in of an A with a span of
length l. in(A, l) is then |log(p)| where p is the maximal probability of
a parse tree with root label A and span length l.

Computation of in(A, l) for all n, 1 ≤ n ≤ nmax :

Computation of inside score
For all A ∈ N , l ≤ n: in(A, l) =∞.

For all l, 1 ≤ l ≤ n and all non-terminals A:
If l == 1 and p max. prob. with p : A→ a ∈ P

for some a ∈ T, then in(A, l) = |log(p)|.
Else:

For all l1, 1 ≤ l1 ≤ l − 1, and all A→ BC:
new = |log(p(A→ BC))|+ in(B, l1) + in(C, l − l1).
If new < in(A, l), then in(A, l) = new.

11 / 27



Computation of the SX estimates (2)

�e SX outside estimate depends on the category A, the span length l
and the number of terminals nl, nr to the le� and right of A
respectively.

Computation of out(A, nl, l, nr) for all n with 1 ≤ n ≤ nmax :

We start with the maximal length. �e outside score of an S
with span length n is 0 (probability 1). Other non-terminals
with span length n have score∞ (probability 0).
Non-terminals A with smaller spans are estimated via their pos-
sible use as a right-hand side element in a production B→ AC
(combination with a sister to the right) or B → CA (combina-
tion with a sister to the le�). In this case, the outside estimate
of the mother, the probability of the production and the insde
estimate of the sister give a possible value for the outside score
of A.

12 / 27



Computation of the SX estimates (3)

Computation of outside score
For all l, n ≥ l ≥ 1 (start with n) and for all nl, nr
with n = nl + l + nr and all non-terminals A:

out(A, nl, l, nr) =∞.
If nl == nr == 0 and A == S, then out(A, nl, l, nr) = 0.
Else:

For all lC, 1 ≤ lC ≤ nr, and all B→ AC:
new = |log(p(B→ AC))|+out(B, nl, l+lC , nr−lC)+in(C, lC).
out(A, nl, l, nr) = min(new, out(A, nl, l, nr)).

For all lC, 1 ≤ lC ≤ nl, and all B→ CA:
new = |log(p(B→ CA))|+out(B, nl− lC , l+ lC , nr)+in(C, lC).
out(A, nl, l, nr) = min(new, out(A, nl, l, nr)).

13 / 27



Computation of the SX estimates (4)

Algorithm similar to the computation of inside and outside
probability (charts β and α), except that here we search for the best
probability and not the sum of all probabilities.

Example
Consider the PCFG G =
〈{N ,A}, {camping, car, nice, red, ugly, green, house, bike}, P,N 〉
with productions:

0.1 : N → NN 0.2 : N → AN
0.1 : N → red 0.1 : N → green
0.1 : N → car 0.1 : N → bike
0.2 : N → camping 0.1 : N → house
0.3 : A→ nice 0.25 : A→ ugly
0.2 : A→ red 0.25 : A→ green

14 / 27



Computation of the SX estimates (5)

Example continued
0.1(1) : N → NN 0.2(0.7) : N → AN 0.1(1) : N → red 0.1(1) : N → green
0.1(1) : N → car 0.1(1) : N → bike 0.2(0.7) : N → camping 0.1(1) : N → house
0.3(0.5) : A → nice 0.25(0.6) : A → ugly 0.2(0.7) : A → red 0.25(0.6) : A → green

Estimates of inside viterbi scores (up to length 4):

A 0.5 ∞ ∞ ∞
N 0.7 1.9 3.1 4.3

1 2 3 4 l

in(A, 1) = min{0.5, 0.6, 0.7}, in(N , 1) = min{1, 0.7}
in(A, 2) =∞, in(N , 2) = min{1+ 0.7+ 0.7, 0.7+ 0.5+ 0.7}
in(A, 3) =∞, in(N , 3) = min{1+ 0.7+ 1.9, 0.7+ 0.5+ 1.9}
in(A, 4) =∞, in(N , 4) = min{1+0.7+3.1, 1+1.9+1.9, 0.7+0.5+3.1}

15 / 27



Computation of the SX estimates (6)

Example continued
0.1(1) : N → NN 0.2(0.7) : N → AN

inside scores:
A 0.5 ∞ ∞ ∞
N 0.7 1.9 3.1 4.3

1 2 3 4

Outside estimates (for n = 4, the others are omi�ed):

l = 4: out(A, 0, 4, 0) =∞, out(N , 0, 4, 0) = 0

l = 3: out(A, 0, 3, 1) = min{0.7+ 0.7+ 0} = 1.4, out(A, 1, 3, 0) =∞
out(N , 0, 3, 1) = min{1+ 0.7+ 0} = 1.7,
out(N , 1, 3, 0) = min{1+ 0.7+ 0, 0.7+ 0, 5+ 0} = 1.2

l = 2: out(A, 2, 2, 0) = ∞, out(A, 1, 2, 1) = min{0.7 + 0.7 + 1.2} = 2.6,
out(A, 0, 2, 2) = min{0.7+ 0.7+ 1.7, 0.7+ 1.9+ 0} = 2.6
out(N , 0, 2, 2) = min{1+ 0.7+ 1.7, 1+ 1.9+ 0} = 2.9,
out(N , 1, 2, 1) = min{0.7+ 0.5+ 1.7, 1+ 0.7+ 1.7, 1+ 0.7+ 1.2} = 2.9,
out(N , 2, 2, 0) = min{1+ 0.7+ 1.2, 1+ 1.9+ 0} = 2.9

16 / 27



Computation of the SX estimates (7)

Example continued
0.1(1) : N → NN 0.2(0.7) : N → AN

inside scores:
A 0.5 ∞ ∞ ∞
N 0.7 1.9 3.1 4.3

1 2 3 4

l = 1: out(A, 3, 1, 0) =∞,
out(A, 2, 1, 1) = min{0.7+ 0.7+ 2.9} = 4.3,
out(A, 1, 1, 2) = min{0.7+ 0.7+ 2.9, 0.7+ 1.9+ 1.2} = 3.8,
out(A, 0, 1, 3) = min{0.7+0.7+2.9, 0.7+1.9+1.7, 0.7+3.1+0} = 3.8
out(N , 3, 1, 0) = min{1+ 0.7+ 2.9, 1+ 1.9+ 1.2, 1+ 3.1+ 0, 0.7+
0.5+ 2.9} = 4.1,
out(N , 2, 1, 1) = min{1+ 0.7+ 2.9, 1+ 1.9+ 1.7, 1+ 0.7+ 2.9, 0.7+
0.5+ 2.9} = 4.1,
out(N , 1, 1, 2) = min{1+ 0.7+ 2.9, 1+ 0.7+ 2.9, 1+ 1.9+ 1.2, 0.7+
0.5+ 2.6} = 3.8,
out(N , 0, 1, 3) = min{1+ 0.7+ 2.9, 1+ 1.9+ 1.7, 0.7+ 3.1+ 0} = 3.8

17 / 27



Parsing with the SX estimate (1)

We incorporate the SX estimate into the weights of our deduction
rules (n is the sentence length):

Scan: |log(p)|+ out(A, i − 1, 1, n− i) : [A, i − 1, i] p : A→ wi

Complete:
x1 + out(B, i, j − i, n− j) : [B, i, j], x2 + out(C, j, k − j, n− k) : [C, j, k]

x1 + x2 + |log(p)|+ out(A, i, k − i, n− k) : [A, i, k]
where p : A→ B C ∈ P

18 / 27



Summary of A∗ parsing (1)

Modular approach:

1 Specify a weighted deductive system.
2 Use Knuth’s algorithm to compute the best goal item.
3 Incorporate not only the inside probability but also an estimate

of the outside probability in the weights.

19 / 27



Summary of A∗ parsing (2)

Advantages:

Guarantee to �nd the best parse (in contrast to, e.g., beam
search methods).
�e combination of inside weight and estimated outside weight
helps to reduce the number of items by over 80 %, compared to
exhaustive parsing.
Approach applies to any system that can be characterized with
an appropriate weighted deductive system.

20 / 27



k-best parsing (1)

Extension to k-best parsing (Pauls & Klein, 2009).

Problem with k-best parsing:

We can no longer abstract away from the concrete parse trees,
i.e., use only items [A, i, j].
Instead, one has to keep track of actual parse trees with their
weight, i.e., we need items [TA, i, j] where TA is a parse tree
yielding the substring of the input between positions i and j.
�ere are exponentially many, we need to �nd a way to e�-
ciently restrict the search space.

Pauls & Klein (2009) extend A∗ parsing to k-best.

21 / 27



k-best parsing (2)

�e ouside estimate is computed as in A∗ parsing, yielding
values out(A, nl, l, nr) as above.
For the inside viterbi score (best parse tree), we also use A∗:
(We write all weights as pairs 〈i, o〉 where the �rst is the inside
component, the second the outside component and the relevant
agenda weight is their sum.)

Scan:

〈|log(p)|, out(A, i − 1, 1, n− i)〉 : I [A, i − 1, i] p : A→ wi

Complete:
〈x1, out(B, i, j − i, n− j)〉 : I [B, i, j], 〈x2, out(C, j, k − j, n− k)〉 : I [C, j, k]

〈x1 + x2 + |log(p)|, out(A, i, k − i, n− k)〉 : I [A, i, k]

where p : A→ B C ∈ P

22 / 27



k-best parsing (3)

In addition, we do a delayed computation of the outside viterbi
score (weight of items O[A, i, j] and of the score of actual parse
trees (weight of [TA, i, j]).
All these items are handled in a single priority agenda, i.e., in
every step, the best item (lowest weight) is popped from the
agenda and we produce new items with this one and items
from the chart.

23 / 27



k-best parsing (4)

Computation of the outside viterbi score (best parse tree for
completing an A spanning the input from i to j to an S spanning the
entire input):

〈x1, 0〉 : I [S, 0, n]
〈x1, 0〉 : O[S, 0, n]

Out-L:

〈i1, x1〉 : O[A, i, j], 〈x2, o2〉 : I [B, i, k], 〈x3, o3〉 : I [C, k, j]
〈x2, x1 + x3 + |log(p)|〉 : O[B, i, k]

p : A→ B C ∈ P

Out-R:

〈i1, x1〉 : O[A, i, j], 〈x2, o2〉 : I [B, i, k], 〈x3, o3〉 : I [C, k, j]
〈x3, x1 + x2 + |log(p)|〉 : O[C, k, j]

p : A→ B C ∈ P

24 / 27



k-best parsing (5)

Computation of the scores of actual parse trees:

〈|log(p)|, out(A, i − 1, 1, n− i)〉 : [A(wi), i − 1, i] p : A→ wi

〈i1, x1〉 : O[A, i, j], 〈x2, o2〉 : [TB, i, k], 〈x3, o3〉 : [TC , k, j]
〈x2 + x3 + |log(p)|, x1〉 : [A(TB, TC), i, j]

p : A→ B C ∈ P

25 / 27



k-best parsing (6)

Everything is done in a single agenda.
Start: Items I [A, i − 1, i] and [A(wi), i − 1, i] are put into the
agenda.
�en the inside items I [A, i, j] are computed.
Once I [S, 0, n] pops from the agenda, we start computing out-
side items O[A, i, j].
When the O[A, i − 1, i] items for the non-terminals yielding
single terminals pop, we start computing parse trees.
�ese steps can interleave.

Satis�es the monotonicity requirements of weighted deductive
parsing. Consequently, the �rst k parse trees popped from the agenda
are the k best parse trees, i.e., the algorithm can terminate a�er
having popped the �rst k derivation trees with root S that yield the
entire input, [TS, 0, n].

26 / 27



References

Dan Klein & Christopher D. Manning (2003). A∗ Parsing: Fast
Exact Viterbi Parse Selection. In Proceedings of HLT-NAACL
2003 Main Papers, pp. 40–47. Edmonton, May-June 2003.
Mark-Jan Nederhof (2003). Weighted Deductive Parsing and
Knuth’s Algorithm. Computational Linguistics 29(1), pp. 135–
143 (2003).
Adam Pauls & Dan Klein (2009). K-Best A∗ Parsing. In Proceed-
ings of the 47th Annual Meeting of the ACL and the 4th IJCNLP
of the AFNLP, pp. 958–966. Singapore, August 2009.

27 / 27


	Introduction
	A* parsing
	Computation of the SX estimates
	Parsing with the SX estimate
	Summary of A* parsing
	k-best parsing

