
Machine Learning
for natural language processing
PCFG: Parameter estimation with EM

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Summer 2016

1 / 30



Introduction

Unsupervised parameter estimation for HMMs has been done
with the EM algorithm, based on the forward and backward
probabilities.
EM can be used more generally for unsupervised parameter
estimation with generative models (Dempster et al., 1977).
Today: introduction of PCFG, inside and outside probabilities
and unsupervised estimation of the probabilities of the PCFG
using EM based on inside and outside probabilities.

Booth (1969); Pereira & Schabes (1992); Collins; Petrov et al. (2006)

2 / 30



Table of contents

1 Motivation

2 PCFG

3 Inside and outside computation

4 EM Training for probability estimation

5 Treebank re�nement

3 / 30



Motivation

Probabilistic Context-Free Grammars (PCFG)

are CFGs with probabilities a�ached to productions
are widely used for data-driven constituency parsing

�e probabilities can be estimated from unannotated data via the EM
algorithm, based on inside and outside probabilities, similar to
estimating HMM parameter with forward and backward probabilities.

4 / 30



Motivation

PCFG
Start symbol VP
0.8 VP→ V NP
0.2 VP→ VP PP
1 NP→ Det N

1 PP→ P NP
0.1 N→ N PP
1 V→ sees

1 Det→ the
1 P→ with
0.6 N→ man
0.3 N→ telescope

t1 VP

PP

NP

N

telescope

Det

the

P

with

VP

NP

N

man

Det

the

V

sees

t2 VP

NP

N

PP

NP

N

telescope

Det

the

P

with

N

man

Det

the

V

sees

P(t1) = 0.6 ⋅ 0.8 ⋅ 0.2 ⋅ 0.3 = 0.0288
P(t2) = 0.6 ⋅ 0.8 ⋅ 0.1 ⋅ 0.3 = 0.0144

5 / 30



PCFG
We assume (without loss of generality) that our PCFGs are in
Chomsky Normal Form, i.e., we adopt the following de�nition:

PCFG
A probabilistic context-free grammar is a context-free grammar
G = ⟨N ,T ,P, S⟩ with an additional function p ∶ P → R such that

N and T are alphabets of non-terminal and terminal symbols,
S ∈ N is a distinguished start symbol,
P is a �nite set of productions (rules) such that every rule r ∈ P
either is of the form A → a with A ∈ N ,a ∈ T or of the form
A→ BC with A,B,C ∈ N ,
p assigns probabilities to rules such that for any rule A → α,
0 ≤ p(A→ α) ≤ 1, and for every A ∈ N : ∑A→α∈P p(A→ α) = 1.

p(A→ α) is the conditional probability of expanding to α, given the
non-terminal A, p(A→ α) = P(α∣A).

6 / 30



PCFG
Each internal node in a parse tree t for an input sentence w
corresponds to a unique production with the label of the node being
the le�hand side and the labels of its daughters (from le� to right)
being the righthand side. Furthermore, it spans a unique substring of
the input, characterized by the indices of the �rst and last terminal.

PCFG
t1 VP

PP

NP

N

telescope

Det

the

P

with

VP

NP

N

man

Det

the

V

sees

[VP, 1, 6] → [VP, 1, 3] [PP, 4, 6]
[VP, 1, 3] → [V, 1, 1] [NP, 2, 3]
[NP, 2, 3] → [Det, 2, 2] [N, 3, 3]
[PP, 3, 6] → [P, 4, 4] [NP, 5, 6]
[NP, 5, 6] → [Det, 5, 5] [N, 6, 6]
[V, 1, 1] → sees
[Det, 2, 2] → the
[N, 3, 3] → man
[P, 4, 4] → with
[Det, 5, 5] → the
[N, 6, 6] → telescope

7 / 30



PCFG
We can de�ne a parse tree as a set of productions with span indices.

�e probability of a parse tree is the product of the probabilities of its
rules with span indices:

P(t) = ∏
[A,i,j]→[B,i,k][C,k+1,j]∈t

p(A→ BC) ∏
[A,i,j]→a∈t

p(A→ a)

Let T(w) be the set of all possible parse trees for w. �en we have for
every t ∈ T(w):

P(t∣w) = P(t)
∑t′∈T(w) P(t′)

and

P(w) = ∑
t′∈T(w)

P(t′)

8 / 30



PCFG
Problems one might want to solve:

1 Parsing/Decoding: Given a PCFG G and an input sentence w,
determine the (k) best parse trees for w.

2 Likelihood: Given a PCFG G and an input sentence w, deter-
mine the likelihood of w.

3 Supervised data-driven treebank grammar induction:
Given a treebank (= training data annotated with parse trees),
read o� a PCFG that maximizes the likelihood of the training
data.

4 Semi-supervised data-driven grammar induction: Given a
CFG and unannotated training data, estimate the probabilities
of the CFG rules.

We will look at 2. and 4.

9 / 30



Inside and outside computation

Given a PCFG and an input w = w1 . . .wn, determine the likelihood of
w, i.e., compute ∑t′∈T(w) P(t′).
We don’t want to compute the probability of every parse tree
separately and then sum over the results. �is is too expensive.

Instead, similar to the idea of the forward and backward algorithms
for HMM, we adopt a computation with tabulation, in order to share
the results for common subtrees.

10 / 30



Inside and outside computation

Idea: We �ll a ∣N ∣ × ∣w∣ × ∣w∣ matrix α where the �rst dimension is the
id of a non-terminal, and the second and third are the start and end
indices of a span. αA,i,j gives the probability of deriving wi . . .wj from
A or, put di�erently, of a parse tree with root label A and yield
wi . . .wj :

αA,i,j = P(A ∗⇒ wi . . .wj ∣A)

Inside computation
1 for all 1 ≤ i ≤ ∣w∣ and A ∈ N :

if A→ wi ∈ P , then αA,i,i = p(A→ wi), else αA,i,i = 0
2 for all 1 ≤ i < j ≤ ∣w∣ and A ∈ N :
αA,i,j = ∑A→BC∈P ∑j−1

k=i p(A→ BC)αB,i,kαC,k+1,j

We have in particular αS,1,∣w∣ = P(w).

11 / 30



Inside and outside computation

Inside computation

0.3: S→ AS 0.6: S→ AX 0.1: S→ a 1: X→ SA 1: A→ a
input w = a4

j
4

(3.87 ⋅ 10−2,S),
(0.069,X)

(6.9 ⋅ 10−2,S),
(0.03,X)

(3 ⋅ 10−2,S), (0.1,X) (1,A), (0.1,S)

3
(6.9 ⋅ 10−2,S),
(0.03,X)

(3 ⋅ 10−2,S), (0.1,X) (1,A), (0.1,S)

2
(3 ⋅ 10−2,S), (0.1,X) (1,A), (0.1,S)

1
(1,A), (0.1,S)
1 2 3 4 i

P(aaaa) = αS,1,4 = 0.0387

12 / 30



Inside and outside computation
We can also compute the outside probability of a given non-terminal
A with a span from i to j.

Inside: Sum over all possibilities for the tree below A (spanning from i
to j).

Outside: Sum over all possibilities for the part of the parse tree
outside the tree below A, i.e., over all possibilities to complete a A, i, j
tree into a parse tree for the entire sentence.

A

i j

A
Outside probability βA,i,j

Inside probability αA,i,j

13 / 30



Inside and outside computation

We �ll a ∣N ∣ × ∣w∣ × ∣w∣ matrix β such that βA,i,j gives the probability
of deriving w1 . . .wi−1Awj+1 . . .w∣w∣ from S or, put di�erently, of
deriving a tree with root label S and yield w1 . . .wi−1Awj+1 . . .w∣w∣:

βA,i,j = P(S ∗⇒ w1 . . .wi−1Awj+1 . . .w∣w∣∣S)

We need the inside probabilities in order to compute the outside
probabilities.

Outside computation
1 βS,1,∣w∣ = 1 and βA,1,∣w∣ = 0 for all A ≠ S
2 for all 1 ≤ i < j ≤ ∣w∣ and A ∈ N :
βA,i,j = ∑B→AC∈P ∑n

k=j+1 p(B → AC)βB,i,kαC,j+1,k
+∑B→CA∈P ∑i−1

k=1 p(B → CA)βB,k,jαC,k,i−1

14 / 30



Inside and outside computation

Outside computation

0.3: S→ AS 0.6: S→ AX 0.1: S→ a 1: X→ SA 1: A→ a
input w = a3

j
3

(1,S), (0,A), (0,X) (0.3,S), (0,A),
(0.6,X)

(9 ⋅ 10−2,S), (0.18,X),
(3 ⋅ 10−2,A)

2
(0,S), (0,X), (0.03,A) (0.6,S), (0,X), (8.99 ⋅

10−3,A)
1

(0,S), (0,X),
(6.9 ⋅ 10−2,A)
1 2 3 i

15 / 30



Inside and outside computation
�e following holds:

1 For every i, j with 1 ≤ i < j ≤ n, we have

P(w) = ∑
A∈N

αA,i,jβA,i,j

2 �e probability of a parse tree for w with a node labeled A that
spans wi . . .wj is

P(S ∗⇒ w1 . . .wi−1Awj+1 . . .wn
∗⇒ w1 . . .wn) = αA,i,jβA,i,j

A

i j

A

3 In particular: P(w) = αS,1,∣w∣

16 / 30



Training

Supervised data-driven PCFG parsing: Given a treebank, read o� the
rules and estimate their probabilities based on the counts of the rules.

More challenging: Unsupervised parameter estimation: Given a CFG
and unannotated training data, estimate the probabilities of the rules.

We use the EM algorithm, based on the inside and outside
computations from the previous slides.

17 / 30



Training

Underlying ideas, as in the HMM parameter estimation:

We estimate parameters iteratively: we start with some param-
eters and use the estimated probabilities to derive be�er and
be�er parameters.

We use our current parameters to estimate (fractional) counts
of possible parse trees and possible rules. In other words,
the probability mass assigned to the training corpus gets dis-
tributed among the possible parse trees.

�ese fractional counts are then used to compute the parame-
ters of the next model.

18 / 30



Training
For each rule r = A→ γ ∈ P , we start with some initial probabilities
p(0)(r) that can be chosen randomly. In each iteration, based on the
probabilities p(i), new probabilities p(i+1) are estimated.

Intuition:

p(i+1)(A→ γ) = expected count of A→ γ

expected count of non-terminal A
more precisely

p(i+1)(A→ γ) = f (i)(A→ γ)
∑A→γ′∈P f (i)(A→ γ′)

In the E-step of the algorithm, we compute the fractional counts
f (i)(r) for all r ∈ P and in the M-step, we re-estimate the probabilities
according to these new counts.

19 / 30



Training
We can think of this as follows:

Our training data are sentences w(1), . . . ,w(N).

In each iteration, based on the current probabilities, we create a
treebank for training:

For each of the sentences, the treebank contains all possible
parse trees. But tree t does not occur once in the treebank,
instead, it occurs P(t) times.

Consequently, when counting occurrences of rules in the tree-
bank in order to estimate new probabilities, an occurrence of
some rule r in a parse tree t does not add 1 to the count but it
adds P(t).

�e resulting count for rule r , summing up the probabilities of
the parse trees for every occurrence of r , is then the exptected
count of r .

20 / 30



Training
Computation of the fractional counts for a single sentence w: We
distribute P(w) among all the rules used in any of the parse trees of
w, in accordance with the probability of these parse trees.

We have

P(w) = αS,1,∣w∣

and

P(S ∗⇒ w1 . . .wi−1Awj+1 . . .w∣w∣
⇒ w1 . . .wi−1BCwj+1 . . .w∣w∣
∗⇒ w1 . . .wk−1Cwj+1 . . .w∣w∣
∗⇒ w1 . . .w∣w∣)

= βA,i,jαB,i,k−1αC,k,jp(A→ BC)

21 / 30



Training

Computation of Cw(A→ γ) for a sentence w
Let G = ⟨N ,T ,P, S⟩ be a PCFG with probabilities p(r) for all rules
r ∈ P and let w ∈ T∗ be an input sentence.

1 Calculate the inside and outside probabilities αA,i,j and βA,i,j for
all A ∈ N and 1 ≤ i < j ≤ ∣w∣.

2 For every rule of the form A→ BC:

Cw(A→ BC) = ∑
1≤i<k≤j≤n

βA,i,jαB,i,k−1αC,k,jp(A→ BC)
αS,1,∣w∣

3 For every rule of the form A→ a:

Cw(A→ a) = ∑
1≤i≤n,wi=a

βA,i,ip(A→ a)
αS,1,∣w∣

22 / 30



Training

In order to calculate the fractional count f (i)(A→ γ), sum over the
counts Cw(A→ γ) for all sentences in the training corpus:

E-step

Let our training corpus consist of sentences w(1) . . .w(N) and let the
PCFG and its probability function p be as above.

f (A→ γ) = ∑
1≤m≤N

Cw(m)(A→ γ)

�is is the E (expectation) step for our parameters.

23 / 30



Training

From these frequencies (= fractional counts) f (A→ γ), we can
estimate new rule probabilities p̂ towards maximizing the observed
data:

M-step
For every A→ γ ∈ P :

p̂(A→ γ) = f (A→ γ)
∑A→γ′∈P f (A→ γ′)

�is is theM (maximization) step for the rule probabilities.

24 / 30



Training

EM algorithm for estimation of p for a PCFG; training corpus is a
sequence of sentences w(1), . . . ,w(N)

initialize p

iterate until convergence:

E-step

for every 1 ≤ m ≤ N : compute Cw(A→ γ) as above
for every r ∈ P : f (A→ γ) = ∑1≤m≤N Cw(m)(A→ γ)

M-step

for every A→ γ ∈ P : p̂(A→ γ) = f (A→γ)
∑A→γ′∈P f (A→γ′)

return p

25 / 30



Treebank re�nement

So far, we have seen completely unsupervised training. Each
iteration has a complexity of O(∣N ∣3∣w∣3).

�e complexity decreases considerably if we know the parse
trees of the sentences except for the node labels. I.e., we know
about the bracketing of the trees.

Pereira & Schabes (1992) show how this information can be
integrated into the inside outside computation:

1 Given a sentence w with its bracketing, we de�ne c(i, j) as 1 if a
subtree spanning wi . . .wj exists and otherwise it is 0.

2 For every value αA,i,j and βA,i,j , we multiply with the factor
c(i, j). Consequently all values where there is no corresponding
bracketing are set to 0.

Inside outside computation becomes linear in the size of the
input.

26 / 30



Treebank re�nement
�ere also have been a range of approaches to re�ning treebank
grammars. One of the best performing approaches is the Berkeley
parser Petrov et al. (2006).

Starting point: Penn Treebank trees.

Binarization of these trees: le�-branching binarization with
new intermediate non-terminals A where A is the root of the
tree one wants to binarize.

FRAG

.

.

NP

NN

year

Det

this

RB

Not

↝ FRAG

.

.

FRAG

NP

NN

year

Det

this

RB

Not

Start with the treebank grammar obtained from these trees.
27 / 30



Treebank re�nement
Iteration for learning new labels and estimating new probabilities:

Given a current PCFG, repeat the following until no more successful
splits can be found:

Split non-terminals:

Split every non-terminal A into 2 new symbols A1,A2(e.g, NP↝
NP1, NP2),

replace every rule A → α with A1 → α and A2 → α, both with
the same probability as the original rule,

and for every occurrence of A in a righthand side of some B →
γ, replace B → γ with two new rules, one with A1 instead of A
and another one with A2, dividing the probability of the original
rule between these two new rules. �is is done repeatedly until
all old non-terminals have been removed.

Furthermore, add some small amount of randomness to the
probabilities to break the symmetry.

28 / 30



Treebank re�nement

�en, probabilities are re-estimating using the inside-outside
EM algorithm with the spli�ed grammar, based on the correct
treebank bracketing and the coarser node labels in the tree-
bank.

Each split that has contributed to increasing the probability of
the training data is kept and the other splits are reversed.

Result:

POS tags get split, for instance VBZ is split into 11 di�erent
POS tags.
Phrasal non-terminals get split as well, for example di�erent
VP categories for in�nite VPs, passive VPs, intransitive VPs etc.
�e best evaluation was obtained with a resulting grammar
with 1043 symbols, F1 score of 90.2% on the Penn treebank.

29 / 30



References

Booth, T. 1969. Probabilistic representation of formal languages. In Tenth annual ieee
symposium on switching and automata theory, .

Collins, Michael. �� �e inside-outside algorithm.
www.cs.columbia.edu/∼mcollins/io.pdf.

Dempster, A. P., N. M. Laird & D. B. Rubin. 1977. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society 39(1).
1–21.

Pereira, Fernando & Yves Schabes. 1992. Inside-outside reestimation from partially
bracketed corpora. In Proceedings of the 30th annual meeting of the association for
computational linguistics, 128–135. Newark, Delaware, USA: Association for
Computational Linguistics. doi:10.3115/981967.981984.
http://www.aclweb.org/anthology/P92-1017.

Petrov, Slav, Leon Barre�, Romain �ibaux & Dan Klein. 2006. Learning Accurate,
Compact, and Interpretable Tree Annotation. In Proceedings of the 21st
international conference on computational linguistics and 44th annual meeting of the
acl, 433–440. Sydney.

30 / 30

www.cs.columbia.edu/~mcollins/io.pdf
http://www.aclweb.org/anthology/P92-1017

	Motivation
	PCFG
	Inside and outside computation
	EM Training for probability estimation
	Treebank refinement

