Machine Learning
 for natural language processing
 Classification: Naive Bayes

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf
Summer 2016

HEINRICH HEINE
UNIVERSITÄT DÜSSELDORF

Introduction

- Classification = supervised method for classifying an input, given a finite set of possible classes.
- Today: Generative classifier that builds a model for each class. Jurafsky \& Martin (2015), chapter 7, and Manning et al. (2008), chapter 13

Table of contents

(1) Motivation
(2) Multinomial naive Bayes classifier
(3) Training the classifier
4) Evaluation

Motivation

In the following, we are concerned with text classification: the task of classifying an entire text by assigning it a label drawn from some finite of labels.

Common text categorization tasks:

- sentiment analysis
- spam detection
- authorship attribution

Some classifiers operate with hand-written rules. Our focus is, however, on supervised machine learning.

Generative classifiers (e.g., naive Bayes) build a model for each class while discriminative classifiers learn useful features for discriminating between the different classes.

Multinomial naive Bayes classifier

Intuition: Represent a text document as a bag-of-words keeping only frequency information but ignoring word order.

Example

It is a truth universally acknowledged, a 6 that a single man in possession of a
is $\quad 3$ good fortune, must be in want of a wife. However little known the feelings or views of such a man may be on his first entering a neighbourhood, this truth is so well fixed in the minds of the surrounding families, that he is considered the rightful property of some one or other of their daughters.
$\begin{array}{ll}\mathrm{a} & 6 \\ \text { of } & 6\end{array}$
is 3
truth 2
that 2
$\rightarrow \quad$ man 2
or 2
it 1
universally 1
acknowledged 1

Multinomial naive Bayes classifier

Naive Bayes returns the class \hat{c} out of the set C of classes wich has the maximum posterior probability given the document d :

$$
\hat{c}=\underset{c \in C}{\arg \max } P(c \mid d)
$$

Reminder: Bayes' rule

$$
P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)}
$$

$$
\hat{c}=\underset{c \in C}{\arg \max } P(c \mid d)=\underset{c \in C}{\arg \max } \frac{P(d \mid c) P(c)}{P(d)}=\underset{c \in C}{\arg \max } P(d \mid c) P(c)
$$

- $P(c)$: prior probability of the class c
- $P(d \mid c)$: likelihood of the document d given the class c
- $P(d \mid c) P(c)=P(d, c)$: joint probability of class and document

Multinomial naive Bayes classifier

We represent d as a set of features f_{1}, \ldots, f_{n} and make the naive Bayes assumption that

$$
P\left(f_{1}, f_{2}, \ldots, f_{n} \mid c\right)=P\left(f_{1} \mid c\right) \ldots P\left(f_{n} \mid c\right)
$$

Each word $w_{1}, w_{2}, \ldots, w_{|d|}$ in the document d is a feature:

$$
\hat{c}=\underset{c \in C}{\arg \max } P(c) \prod_{i=1}^{|d|} P\left(w_{i} \mid c\right)
$$

As usual, we calculate in log space:

$$
\hat{c}=\underset{c \in C}{\arg \max }\left(\log P(c)+\sum_{i=1}^{|d|} \log P\left(w_{i} \mid c\right)\right)
$$

Training the classifier

First try: Maximum likelihood estimates, based on frequencies in the training data.

Our training data consists of $N_{d o c}$ documents, each of which is in a unique class $c \in C . N_{c}$ is the number of documents belonging to class c. $C(w, c)$ gives the number of times word w occurs in a document from class c.

$$
\begin{gathered}
\hat{P}(c)=\frac{N_{c}}{N_{d o c}} \\
\hat{P}(w \mid c)=\frac{C(w, c)}{\sum_{w^{\prime}} C\left(w^{\prime}, c\right)}
\end{gathered}
$$

Training the classifier

Example

Classes A and B, documents to be classified are all $d \in\{a, b\}^{*}$.
Training data:

d	c	d	c
$a a$	A	$b a$	A
$a b$	A	$b b$	B

$P(A)=0.75, P(B)=0.25$
$P(a \mid A)=\frac{4}{6}=\frac{2}{3}, P(b \mid A)=\frac{2}{6}=\frac{1}{3}, \quad P(a \mid B)=\frac{0}{2}=0, P(b \mid B)=\frac{2}{2}=1$
Classification of new documents:

d	$P(d \mid A)$	$P(d \mid A) P(A)$	$P(d \mid B)$	$P(d \mid B) P(B)$	class
$a a b a$	0.1	0.075	0	0	A
$a a a$	0.3	0.225	0	0	A
$b b b a$	0.02	0.015	0	0	A
$b b b b$	0.01	0.0075	1	0.25	B

Training the classifier

Problems:

- Unseen combinations of w and c.
- Unknown words.

Simplest solution for unseen w, c combinations: add-one (Laplace) smoothing, commonly used in naive Bayes text categorization.

$$
\hat{P}(w \mid c)=\frac{C(w, c)+1}{\sum_{w^{\prime}}\left(C\left(w^{\prime}, c\right)+1\right)}=\frac{C(w, c)+1}{\sum_{w^{\prime}} C\left(w^{\prime}, c\right)+|V|}
$$

(V being the vocabulary.)
Standard solution for unknown words: simply remove them from the test document.

Training the classifier

Example from Jurafsky \& Martin (2015), chapter 7

	c	d
Training	-	"just plain boring"
	-	"entirely predictable and lacks energy"
	-	"no surprises and very few laughs"
	+	"very powerful"
	+	"the most fun film of the summer"
Test	$?$	$S=$ "predictable with no originality"

$$
\begin{gathered}
P(-)=\frac{3}{5}, P(+)=\frac{2}{5},|V|=20 \\
P(S \mid-) P(-)=\frac{1+1}{14+20} \frac{1+1}{14+20} \frac{3}{5}=\frac{2 \times 2 \times 3}{34 \times 34 \times 5}=0.002076 \\
P(S \mid+) P(+)=\frac{1}{9+20} \frac{1}{9+20} \frac{2}{5}=\frac{2}{29 \times 29 \times 5}=0.000476
\end{gathered}
$$

Evaluation

First consider the simple case of $|C|=2$, i.e., we have only 2 possible classes, i.e., we label "is in c " or "is not in c ".

The classifier is evaluated on human labeled data (gold labels). For each document, we have a gold label and a system label. Four possibilities:

	gold positive	gold negative
system positive	true positive	false positive
system negative	false negative	true negative

Evaluation

The following evaluation metrics are used ($\mathrm{t} / \mathrm{fp} / \mathrm{n}=$ number of true/false positives/negatives):
(1) Precision: How many of the items the system classified as positive are actually positive?

$$
\text { Precision }=\frac{\mathrm{tp}}{\mathrm{tp}+\mathrm{fp}}
$$

(2) Recall: How many of the positives are classified as positive by the system?

$$
\text { Recall }=\frac{\mathrm{tp}}{\mathrm{tp}+\mathrm{fn}}
$$

(3) Accuracy: How many of the classes the system has assigned are correct?

$$
\text { Accuracy }=\frac{\mathrm{tp}+\mathrm{tn}}{\mathrm{tp}+\mathrm{fp}+\mathrm{tn}+\mathrm{fn}}
$$

Evaluation

The F-measure combines precision P and recall R :

$$
F_{\beta}=\frac{\left(\beta^{2}+1\right) P R}{\beta^{2} P+R}
$$

β weights the importance of precision and recall:

- $\beta>1$ favors recall;
- $\beta<1$ favors precision;
- $\beta=1$: both are equally important.

With $\beta=1$, we get

$$
F_{1}=\frac{2 P R}{P+R}
$$

($F_{1}=$ Harmonic mean of P and R.)

Evaluation

Example

Training data:

d	c	d	c
a	A	$a a$	A
b	A	$b b$	B
Test data:			
d	c	d	c
$a b$	A	$b b a$	B
$b a$	A	$b b b b$	B

$$
\begin{aligned}
& \log P(A)=\log \frac{3}{4}=-0.12 \\
& \log P(B)=\log \frac{1}{4}=-0.6 \\
& \log P(a \mid A)=\log \frac{4}{6}=-0.18 \\
& \log P(b \mid A)=\log \frac{2}{6}=-0.48 \\
& \log P(a \mid B)=\log \frac{1}{4}=-0.6 \\
& \log P(b \mid B)=\log \frac{3}{4}=-0.12
\end{aligned}
$$

Classes assigned to test data:
$a b: \quad \log P(A)+\log P(a \mid A)+\log P(b \mid A)=-0.12-0.18-0.48=-0.78$
$\log P(B)+\log P(a \mid B)+\log P(b \mid B)=-0.6-0.6-0.12=-1.32$
\Rightarrow class A since $-0.78>-1.32$
bba: $A:-(0.12+2 \cdot 0.48+0.18)=-1.26$
$B:-(0.6+2 \cdot 0.12+0.6)=-1.44$
\Rightarrow class A

Evaluation

Example continued

Test data:					
d	$c_{\text {gold }}$	$c_{\text {system }}$	d	$c_{\text {gold }}$	$c_{\text {system }}$
$a b$	A	A	$b b a$	B	A
$b a$	A	A	$b b b b$	B	B

Evaluation with respect to class $A(B=\operatorname{not} A$, i.e., $\neg A)$:

	gold A	gold $\neg A$	$P=\frac{2}{2+1}=0.67$	$A=\frac{3}{4}=0.75$
system A	2	1	$R=\frac{2}{2+0}=1$	$F_{1}=\frac{2 \cdot \frac{2}{3}}{\frac{2}{3}+1}=0.8$

Evaluation with respect to class B :

	gold B	gold $\neg B$	$P=\frac{1}{1}=1$	$A=\frac{3}{4}=0.75$
system B	1	0	$R=\frac{1}{2}=0.5$	$F_{1}=\frac{2 \cdot \frac{1}{2}}{\frac{1}{2}+1}=0.67$
system $\neg B$	1	2		

Evaluation

Evaluation for classifiers with more than 2 classes but a unique class for each document (multinomial classification):
Results can be represented in a confusion matrix with one column for every gold class and one row for every sytsem class.

We can compute precision and recall for every single class c as before based on a separate contingency matrix for that class.

The contingency tables can be pooled into one combined contingency table.

Two ways of combining this into an overall evaluation:
(1) Macroaveraging: average P / R over all classes.
(2) Microaveraging: compute P / R from the pooled contingency table.

Evaluation

Example

We classify documents as to whether they are from the 18th, 19th or 20th century. Our test set comprises 600 gold labeled documents.
Possible confusion matrix:
gold labels

		18th	19th	20th
system	18th	150	35	0
labels	19th	20	110	5
	20th	10	10	260

Separate contingency tables:

18th	yes	no	19th	yes	no	20th	yes	o
yes	150	35	yes	110	25	yes	260	20
no	30	385	no	45	420	no	5	315

Pooled table:

	yes	no
y	520	80
n	80	1120

Evaluation

Example continued

18	yes	no	19	yes	no	20	yes	no		yes	no
y	150	35									
n	30	385	y	110	25	y	260	20	y	520	80
n	45	420	n	5	5	315					
n	80	1120									

Single class P and R:
18th: $\quad P_{18 t h}=\frac{150}{150+35}=0.81, \quad R_{18 t h}=\frac{150}{150+30}$
19th: $\quad P_{19 t h}=\frac{110}{110+25}=0.81, \quad R_{19 t h}=\frac{110}{110+45}$
20th: $\quad P_{20 t h}=\frac{260}{260+20}=0.93, \quad R_{20 t h}=\frac{260}{260+5}$
Macroaverage P: $\frac{0.81+0.81+0.93}{3}=0.85$
Microaverage P: $\frac{520}{520+80}=0.87$

Microaverage is dominated by the more frequent classes.

References

Jurafsky, Daniel \& James H. Martin. 2015. Speech and language processing. an introduction to natural language processing, computational linguistics, and speech recognition. Draft of the 3rd edition.

Manning, Christopher D., Prabhakar Raghavan \& Hinrich Schütze. 2008. Introduction to information retrieval. Cambridge University Press.

