
Machine Learning
for natural language processing

N-grams and language models

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Summer 2016

1 / 25



Introduction

Goals:

Estimate the probability that a given sequence of words occurs
in a speci�c language.
Model the most probable next word for a given sequence of
words.

Jurafsky & Martin (2015), chapter 4, and Chen & Goodman (1999)

2 / 25



Table of contents

1 Motivation

2 N-grams

3 Maximum likelihood estimation

4 Evaluating language models

5 Unknown words

6 Smoothing

3 / 25



Motivation

Examples from Jurafsky & Martin (2015)
(1) Please turn your homework . . .
What is a probable continuation? Rather in or over and not
refrigerator.

(2) a. all of a sudden I notice three guys standing on the side-
walk

b. on guys all I of notice sidewalk three a sudden standing
the

Which of the two word orders is be�er?

Language model (LM): Probabilistic model that gives P(w1 . . .wn) and
P(wn∣w1 . . .wn−1)

4 / 25



Motivation
Applications:

Tasks in which we have to identify words in noisy, ambiguous
input: speech recognition, handwriting recognition, . . .
spelling correction

Example
(3) a. their is only one wri�en exam in this class

b. there is only one wri�en exam in this class

machine translation: among a series of di�erent word orders
in the target language, one has to choose the best one.

Example
(4) a. Das Fahrrad wird er heute reparieren.

b. �e bike will he today repair
c. �e bike he will today repair.
d. �e bike he will repair today.

5 / 25



N-grams

Notation: wm
1 = w1 . . .wm.

�estion: How can we compute P(wm
1 )?

P(wm
1 ) = P(w1)P(w2∣w1)P(w3∣w2

1) . . .P(wm∣wm−1
1 )

=

m

∏

k=1
P(wk ∣wk−1

1 )

But: computing P(wk ∣wk−1
1 ) for a large k is not feasible.

Approximation of P(wk ∣wk−1
1 ): N-grams, i.e., look at just the n − 1 last

words, P(wk ∣wk−1
k−n+1).

Special cases:

unigrams: P(wk)

bigrams: P(wk ∣wk−1)
trigrams: P(wk ∣wk−2wk−1)

6 / 25



N-grams
With n-grams, we get

1 Probability of a sequence of words:

P(wl
1) ≈

l

∏

k=1
P(wk ∣wk−1

k−n+1)

2 Probability of a next word:

P(wl ∣wl−1
1 ) ≈ P(wl ∣wl−1

l−n+1)

�ese are strong independence assumptions called Markov
assumptions. E.g. with bigrams

Example
P(einfach∣die Klausur war nicht) ≈ P(einfach∣nicht)

7 / 25



Maximum likelihood estimation (MLE)

�estion: How do we estimate the n-gram probabilities?

Maximum likelihood estimation (MLE): Get n-gram counts from a
corpus and normalize so that the values lie between 0 and 1.

P(wk ∣wk−1
k−n+1) =

C(wk−1
k−n+1wk)

C(wk−1
k−n+1)

In the bigram case, this amounts to

P(wk ∣wk−1) =
C(wk−1wk)

C(wk−1)

We augment sentences with an initial ⟨s⟩ and a �nal ⟨/s⟩

8 / 25



Maximum likelihood estimation (MLE)

Example from Jurafsky & Martin (2015)
Training data:
< s > I am Sam < /s >

< s > Sam I am < /s >

< s > I do not like green eggs and ham < /s >

Some bigram probabilities:

P(I∣< s >) =
2
3 P(Sam∣< s >) =

1
3 P(am∣I) = 2

3
P(< /s >∣Sam) = 1

2 P(Sam∣am) = 1
2 P(do∣I) = 1

3

9 / 25



Maximum likelihood estimation (MLE)

Practical issues:

In practice, n is mostly between 3 and 5, i.e., we use trigrams,
4-grams or 5-grams.

LM probabilities are always represented as log probabilities. Ad-
vantage: Adding replaces multiplying and numerical over�ow
is avoided.

p1 ⋅ p2 ⋅ . . . pl = exp(log p1 + log p2 + ⋅ ⋅ ⋅ + log pl)

10 / 25



Maximum likelihood estimation (MLE)

Reminder: log 1 = 0, log 0 = −∞

0 0.2 0.4 0.6 0.8 1
−2.5

−2

−1.5

−1

−0.5

0 log10 x

11 / 25



Evaluating language models

�e data is usually separated into

a training set (80% of the data),
a test set (10% of the data),
and sometimes a development set (10% of the data).

�e model is estimated from the training set. �e higher the
probability of the test set, the be�er the model.
Instead of measuring the probability of the test set, LMs are usually
evaluated with respect to the perplexity of the test set. �e higher the
probability, the lower the perplexity.

12 / 25



Evaluating language models

�e perplexity of a test set W = w1w2 . . .wN is de�ned as

PP(W) = P(W)−
1
N

=
N
√

1
P(W)

=
N
√

1
P(w1w2...wN )

=

N

¿

Á
Á
ÁÀ

1
N

∏

k=1
P(wk ∣wk−1

1 )

With our n-gram model, we get then for the perplexity:

PP(W) =

N

¿

Á
Á
ÁÀ

1
N

∏

k=1
P(wk ∣wk−1

k−n+1)

13 / 25



Evaluating language models

A di�erent way to think about perplexity: it measures the weighted
average branching factor of a language.

Example
L = {a, b, c,d}∗. Frequencies are such that P(a) = P(b) = P(c) =
P(d) = 1

4 (independent from the context).
For any w ∈ L, given this model, we obtain

PP(w) =

∣w∣

¿

Á
Á
Á
ÁÀ

1
∣w∣
∏

k=1

1
4

= ∣w∣

√
1

1
4
∣w∣ =

∣w∣
√

4∣w∣ = 4

�e perplexity of any w ∈ L under this model is 4.

14 / 25



Evaluating language models
Example
L = {a, b, c,d}∗. Words in the language contain three times as many
as as they contain bs, cs or ds. P(a) = 1

2 and P(b) = P(c) = P(d) = 1
6 .

For any w ∈ L with these frequencies and with ∣w∣ = 6n:

PP(w) =
6n

¿

Á
Á
Á
ÁÀ

1
n

∏

k=1

1
2 ⋅ 2 ⋅ 2 ⋅ 6 ⋅ 6 ⋅ 6

=

6n
√

26n ⋅
√

3
6n
= 2
√

3 = 3.46

Assume that we use the same model but test it on aW with equal
numbers of as, bs, cs and ds, ∣W ∣ = 4n. �en we get

PP(W) =
4n

¿

Á
Á
Á
ÁÀ

1
n

∏

k=1

1
2 ⋅ 6 ⋅ 6 ⋅ 6

=
4n√24n ⋅ 33n = 2

4n
√

3
3
4 4n = 2 4√27 = 4.56

15 / 25



Unknown words
Problem: New text can contain

unknown words; or
unseen n-grams.

In these cases, with the algorithm seen so far, we would assign
probability 0 to the entire text. (And we would not be able to compute
perplexity at all.)

Example from (Jurafsky & Martin, 2015)
Words following the bigram denied the in WSJ Treebank 3 with
counts:
denied the allegations 5
denied the speculation 2
denied the rumors 1
denied the report 1

If the test set contains denied the o�er or denied the loan, the model
would estimate its probability as 0.

16 / 25



Unknown words

Unknown or out of vocabulary words:

Add a pseudo-word ⟨UNK⟩to your vocabulary.
Two ways to train the probabilities concerning ⟨UNK⟩:

1 Choose a vocabulary V �xed in advance. Any word w ∉ V in the
training set is converted to ⟨UNK⟩. �en estimate probabilities
for ⟨UNK⟩as for all other words.

2 Replace the �rst occurrence of every word w in the training
set with ⟨UNK⟩. �en estimate probabilities for ⟨UNK⟩as for all
other words.

17 / 25



Smoothing
Unseen n-grams: To avoid probabilities 0, we do smoothing: Take o�
some probability mass from the events seen in training and assign it
to unseen events.

Laplace Smoothing (or add-one smoothing):

Add 1 to the count of all n-grams in the training set before
normalizing into probabilities.
Not so much used for n-grams but for other tasks, for instance
text classi�cation.

For unigrams, if N is the size of the training set and ∣V ∣ the size
of the vocabulary, we replace
P(w) = C(w)

N with PLaplace(w) =
C(w)+1
N+∣V ∣ .

For bigrams, we replace
P(wn∣wn−1) =

C(wn−1wn)
C(wn−1) with PLaplace(wn∣wn−1) =

C(wn−1wn)+1
C(wn−1)+∣V ∣ .

18 / 25



Smoothing

Smoothing methods for n-grams that use the (n − 1)-grams,
(n − 2)-grams etc.:

Backo�: use the trigram if it has been seen, otherwise fall back
to the bigram and, if this has not been seen either, to the uni-
gram.
Interpolation: Use always a weighted combination of the tri-
gram, bigram and unigram probabilities.

Linear interpolation:

P̂(wn∣wn−2wn−1) = λ1P(wn∣wn−2wn−1) + λ2P(wn∣wn−1) + λ3P(wn)

with∑
i
λi = 1.

19 / 25



Smoothing

More sophisticated: each λ is computed conditioned on the context.

P̂(wn∣wn−2wn−1) = λ1(wn−2wn−1)P(wn∣wn−2wn−1)
+λ2(wn−2wn−1)P(wn∣wn−1)
+λ3(wn−2wn−1)P(wn)

In both cases,

the probabilities are �rst estimated from the training corpus,
and the λ parameters are then estimated from separate held-
out data.
�ey are estimated such that they maximize the likelihood of
the held-out data. �is can be done for example using the EM
algorithm (to be introduced later in this course).

20 / 25



Smoothing
Most commonly used N-gram smoothing method: Kneser-Ney
algorithm Kneser & Ney (1995); Chen & Goodman (1999).

Idea: discount the count of an n-gram by the average discount we see
in a held-out corpus.

Table from Jurafsky & Martin (2015)
Average bigram counts in held-out corpus of 22 million words for all
bigrams in 22 million words training data of AP newswire (Church
& Gale, 1991):

count average count
training held-out

0 0.0000270
1 0.448
2 1.25
3 2.24
4 3.23

count average count
training held-out

5 4.21
6 5.23
7 6.21
8 7.21
9 8.26

21 / 25



Smoothing

Absolute discounting:

PAbsoluteDiscounting(wi∣wi−1) =
C(wi−1wi) − d

C(wi−1)
+ λ(wi−1)P(wi)

Possible discount d = 0.75.

Further re�nement: replace P(wi) with the probability that we see wi
as a continuation. Underlying intuition: If wi has appeared in many
contexts, it is a more likely continutation in a new context.

Pcontinuation(wi) =
∣{w ∣C(wwi) > 0}∣

∣{wj−1wj ∣C(wj−1wj) > 0}∣
=

∣{w ∣C(wwi) > 0}∣
∑wj ∣{wj−1 ∣C(wj−1wj) > 0}∣

22 / 25



Smoothing

Interpolated Kneser-Ney smoothing:

PKN (wi∣wi−1) =
max(C(wi−1wi) − d, 0)

C(wi−1)
+ λ(wi−1)Pcontinuation(wi)

where λ(wi−1) is a normalizing constant:

λ(wi−1) =
d

C(wi−1)
∣{w ∣C(wi−1w) > 0}∣

Here,
d

C(wi−1) is the normalized discount, and

∣{w ∣C(wi−1w) > 0}∣ is the number of word types that can
follow wi−1, i.e., the number of times we applied the normalized
discount.

23 / 25



Smoothing

Finally, we obtain as a generalization (Chen & Goodman, 1999):

Interpolated Kneser-Ney
For n > 1:

PKN (wi∣wi−1
i−n+1) =

max(C(wi
i−n+1)−d,0)

C(wi−1
i−n+1) + λ(wi−1

i−n+1)PKN (wi∣wi−1
i−n+2)

and the recursion terminates with

PKN (wi) =
∣{w ∣C(wwi) > 0}∣

∣{wj−1wj ∣C(wj−1wj) > 0}∣

24 / 25



References

Chen, Stanley F. & Joshua Goodman. 1999. An empirical study of smoothing
techniques for language modeling. Computer Speech and Language 13. 359–394.

Church, K. W. & W. A. Gale. 1991. A comparison of the enhanced Good-Turing and
deleted estimation methods for estimating probabilities of English bigrams.
Computer Speech and Language 5. 19–54.

Jurafsky, Daniel & James H. Martin. 2015. Speech and language processing. an
introduction to natural language processing, computational linguistics, and
speech recognition. Dra� of the 3rd edition.

Kneser, R. & H. Ney. 1995. Improved backing-o� for m-gram language modeling. In
Proceedings of the IEEE international conference on acoustics, speech and signal
processing, vol. 1, 181–184. Detroit, MI.

25 / 25


	Motivation
	N-grams
	Maximum likelihood estimation
	Evaluating language models
	Unknown words
	Smoothing

