
Machine Learning
for natural language processing
Classi�cation: Maximum Entropy Models

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Summer 2016

1 / 24



Introduction

Classi�cation = supervised method for classifying an input,
given a �nite set of possible classes.
Today: Discriminative classi�er based on features of the input.

Jurafsky & Martin (2015), chapter 7, Berger et al. (1996); Ratnaparkhi
(1997, 1998)

2 / 24



Table of contents

1 Motivation

2 MaxEnt classi�cation

3 Parameter estimation

3 / 24



Motivation

Just like naive Bayes, logistic regression (= maximum entropy
modeling,MaxEnt)

extracts a set of weighted features from the input,
takes logs,
and combines them linearly.

But: naive Bayes is a generative classi�er while MaxEnt is a
discriminative classi�er.

4 / 24



Motivation

Generative classi�er: estimates the best class c for a given x
indirectly from P(x∣c) and P(c)

argmax
c

P(c∣x) = argmax
c

P(x∣c)P(c)
P(x)

= argmax
c

P(x∣c)P(c)

I.e., the classi�er models how to generate the data x from a
class c.

Discriminative classi�er: directly computes P(c∣x) by dis-
criminating among the di�ernt possibles classes c.

argmax
c

P(c∣x)

5 / 24



MaxEnt classi�cation

Logistic regression (MaxEnt) is a linear classi�er: it estimates
P(c∣x) by

extracting some set of features from the input,
combining these features linearly (= multiplying each by a
weight and adding them up)
and then applying a function to this linear combination.

6 / 24



MaxEnt classi�cation

A linear combination of k weighted features would be

k

∑
i=1

wifi = w⃗ ⋅ f⃗

where w⃗ is the vector of the weights, f⃗ the feature vector.

But: this linear combination can be any real number, it does not give a
probability. �erefore we

1 �rst turn
k

∑
i=1

wifi into something positive by replacing it with

exp∑k
i=1wifi = e∑

k
i=1 wifi , and

2 then normalize the result in order to obtain values between 0
and 1.

7 / 24



MaxEnt classi�cation

Reminder: e0 = 1, e1 = 2.7182818 . . .

−2 −1 0 1 2

0

2

4

6

8 exp x

8 / 24



MaxEnt classi�cation

�e values of our features depend not only on the observation (for
instance the document one wants to classify) but also on the class.

Intuition behind this: a feature f can be discriminative for one class
but maybe not for another class.

For an observation x that we want to classify and a class c from the
set of possible classes C, we therefore consider features fi(c, x) and
our positive value becomes

e∑
k
i=1 wifi(c,x)

.

9 / 24



MaxEnt classi�cation

With a further normalization step, in order to turn these values into
probabilities, we obtain

P(c∣x) =
1
Z
e∑

k
i=1 wifi(c,x)

where 1
Z is the normalization factor

1

∑c′∈C e∑
k
i=1 wifi(c′,x)

Consequently,

P(c∣x) =
e∑

k
i=1 wifi(c,x)

∑c′∈C e∑
k
i=1 wifi(c′,x)

10 / 24



MaxEnt classi�cation
If we are not interested in the probability itself but only in the best
class ĉ for some observation x, we can compute

ĉ = argmax
c∈C

P(c∣x)

= argmax
c∈C

e∑
k
i=1 wifi(c,x)

∑c′∈C e∑
k
i=1 wifi(c′,x)

= argmax
c∈C

e∑
k
i=1 wifi(c,x)

= argmax
c∈C

∑
k
i=1wifi(c, x)

In other words, for some observation x, we assign the class with the
highest weighted sum of feature values.

When the classi�er is embedded into some larger system it can,
however, be useful to calculate the probability.

11 / 24



MaxEnt classi�cation
Features that take only values 0 or 1 are called indicator functions.

Example adapted from Jurafsky & Martin (2015)
Goal: sentiment analysis C = {+,−}. Some possible features and weights:

f1(c, x) = {
1 if “great” ∈ x and c = +
0 otherwise w1 = 1.9

f2(c, x) = {
1 if “second-rate” ∈ x and c = −
0 otherwise w2 = 0.9

f3(c, x) = {
1 if “no” ∈ x and c = −
0 otherwise w3 = 0.7

f4(c, x) = {
1 if “enjoy” ∈ x and c = −
0 otherwise w4 = −0.8

f5(c, x) = {
1 if “great” ∈ x and c = −
0 otherwise w5 = −0.6

12 / 24



MaxEnt classi�cation

Example continued
Observation x: “… there are virtually no surprises, and the writing is
second-rate. So why did I enjoy it so much? For one thing, the cast is
great …”

Weighted feature sums:
class +: 1.9 + 0 + 0 + 0 + 0 = 1.9
class −: 0 + 0.9 + 0.7 − 0.8 − 0.6 = 0.2

P(+∣x) = e1.9
e1.9+e0.9e0.7e−0.8e−0.6 =

e1.9
e1.9+e0.2 = 0.85

P(−∣x) = e0.2
e1.9+e0.2 = 0.15

We o�en have a large number of features.
Features can be created automatically via feature templates.

13 / 24



MaxEnt classi�cation
Example adapted from Malouf (2002a)
Now consider a constituency parsing task. �e ME classi�er ranks
the di�erent parse trees that are possible for some input string w.

Features of tree t weights
f1: # of usage of S → NP VP in tree t 1
f2: # of usages of VP → NP V in tree t 0.6
f3: # of usages of VP → V in tree t 0.4
f4: # of usages of NP → N N in tree t 0.1
f5: # of usages of NP → N in tree t 0.9

Input: w =NNV.�estion: Which is the best parse tree?

t1: t2:
S

VP

VNP

N

NP

N

S

VP

V

NP

NN

t1: 1 + 0.6 + 0 + 0 + 1.8 = 3.4, t2: 1 + 0 + 0.4 + 0.1 = 1.5
t1 is the be�er parse tree according to this ME model.

14 / 24



Parameter estimation

�estion: Given the features, how do we learn the parameters of the
model, i.e., the weights wi?

Logistic regression is trained with conditional maximum
likelihood estimation.

We choose the weights w⃗ = ⟨w1, . . . ,wk⟩ that maximize the (log)
probability of the class labels of the training data.

15 / 24



Parameter estimation
For a single training observation x and its class c we have

ˆ⃗w = argmax
w⃗

logP(c∣x)

and for all training observations x1, . . . , xN with their classes
c1, . . . , cN , we obtain

ˆ⃗w = argmax
w⃗

N

∑
j=1

logP(cj ∣xj)

(Reminder: log
N

∏
j=1

P(cj ∣xj) =
N

∑
j=1

log P(cj ∣xj).)

�e objective function we are maximizing is thus

L(w⃗) =
N

∑
j=1

logP(cj ∣xj)

16 / 24



Parameter estimation

Using the previously given de�nition of P(cj ∣xj), this means

L(w⃗) =
N

∑
j=1

logP(cj ∣xj)

=
N

∑
j=1

log
e∑

k
i=1 wifi(cj ,xj)

∑c′∈C e∑
k
i=1 wifi(c′,xj)

=
N

∑
j=1
(log e∑

k
i=1 wifi(cj ,xj) − log(∑

c′∈C
e∑

k
i=1 wifi(c′,xj)))

=
N

∑
j=1

log e∑
k
i=1 wifi(cj ,xj) −

N

∑
j=1

log(∑
c′∈C

e∑
k
i=1 wifi(c′,xj))

17 / 24



Parameter estimation

One way to estimate our parameters is by generalized iterative
scaling (see Ratnaparkhi (1997)). Assume that we have only indicator
functions. �e algorithm works if the following constraints are
satis�ed for all training observations xj and their associated classes cj ,
1 ≤ j ≤ N :

1
k

∑
i=1

fi(cj, xj) = m for some constant m.

2 �ere is at least one i, 1 ≤ i ≤ k such that fi(xj) = 1.

If the �rst condition is not satis�ed, we can add a (k + 1)st feature
fk+1 with values as follows:

For all xj , 1 ≤ j ≤ N , fk+1(xj) = m −
k

∑
i=1

fi(xj). (Note that this feature is

not an indicator function.)

18 / 24



Parameter estimation
�e learning algorithm iteratively re�nes the weight vector. Assume
that we have training observations x1, . . . , xN with classes c1, . . . , cN .
We start with

w(0)i = 1 for all i, 1 ≤ i ≤ k

and the iteration step is

w(n+1)i = w(n)i

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1
N

N

∑
j=1

fi(cj, xj)

N

∑
j=1

p̃(xj)∑
c∈C

P(n)(c∣xj)fi(c, xj)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

1
m

for all i, 1 ≤ i ≤ k

where p̃(xj) the observed probability of xj in the training data and
P(n)(c∣xj) is the probability we obtain for c given xj with the weights
of the nth iteration step.

19 / 24



Parameter estimation

1
N

N

∑
j=1

fi(cj, xj)

is the average value of fi on our training data while

P(n)(fi) =
N

∑
j=1

p̃(xj)∑
c∈C

P(n)(c∣xj)fi(c, xj)

is the expected value of fi with respect to the model P(n)

�e closer the expected value is to the actual value on the training set,
the smaller becomes the weight di�erence ∣w(n+1)i −w(n)i ∣.

20 / 24



Parameter estimation
Example
Classes A and B, observations are x ∈ {a, b}∗.
Features:

f1(c, x) = {
1 if ∣x∣a > 0, c = A
0 otherwise

f2(c, x) = {
1 if ∣x∣b > 0, c = B
0 otherwise

Training data:
x1 = aa c1 = A p̃(x1) = 1

4
x2 = ab c2 = A p̃(x2) = 1

4
x3 = ba c3 = A p̃(x3) = 1

4
x4 = bb c4 = B p̃(x4) = 1

4

m = 1, 14
4
∑
j=1

f1(cj, xj) =
3
4
and 1

4

4
∑
j=1

f2(cj, xj) =
1
4

w(0)1 = w(0)2 = 1

w(1)1 = 1 ⋅
3
4

0.25(P(0)(A∣x1)+P(0)(A∣x2)+P(0)(A∣x3))
= 3

e
e+1+

e
e+e+

e
e+e

= 1.73

w(1)2 = 1 ⋅ 0.25
0.25(P(0)(B∣x2)+P(0)(B∣x3)+P(0)(B∣x4))

= 1
e

e+e+
e

e+e+
e

e+1
= 0.58

21 / 24



Parameter estimation

Example continued

w(0)1 = w(0)2 = 1

w(1)1 = 1 ⋅
3
4

0.25(P(0)(A∣x1)+P(0)(A∣x2)+P(0)(A∣x3))
= 3

e
e+1+

e
e+e+

e
e+e

= 3e+3
2e+1 = 1.73

w(1)2 = 1 ⋅ 0.25
0.25(P(0)(B∣x2)+P(0)(B∣x3)+P(0)(B∣x4))

= 1
e

e+e+
e

e+e+
e

e+1
= e+1

2e+1 = 0.58

w(2)1 = 3
e1.73

e1.73+1+
e1.73

e1.73+e0.58 +
e1.73

e1.73+e0.58
= 3

5.64
6.64+

5.64
7.43+

5.64
7.43

= 1.27

w(2)2 = 1
e0.58

e0.58+e1.73 +
e0.58

e0.58+e1.73 +
e0.58

e0.58+1
= 1

1.79
7.43+

1.79
7.43+

1.79
2.79

= 0.89

w(3)1 = 3
e1.27

e1.27+1+
e1.27

e1.27+e0.89 +
e1.27

e1.27+e0.89
= 3

3.56
4.56+

3.56
6.00+

3.56
6.00

= 1.52

w(3)2 = 1
e0.89

e0.89+e1.27 +
e0.89

e0.89+e1.27 +
e0.89

e0.89+1
= 1

2.44
6.00+

2.44
6.00+

2.44
3.44

= 0.66

22 / 24



Applications

MaxEnt is a very �exible classi�er that can be applied to a lot of
di�erent problems. Applications are (among others)

Named Entity Recognition (Malouf, 2002b)

POS tagging (Ratnaparkhi, 1998)

Dependency parsing (Hall, 2007)

23 / 24



References

Berger, Adam L., Vincent J. Della Pietra & Stephen A. Della Pietra. 1996. A maximum
entropy approach to natural language processing. Comput. Linguist. 22(1). 39–71.
http://dl.acm.org/citation.cfm?id=234285.234289.

Hall, Keith. 2007. K-best spanning tree parsing. In Proceedings of the 45th annual
meeting of the association of computational linguistics, 392–399. Prague, Czech
Republic: Association for Computational Linguistics.
http://www.aclweb.org/anthology/P07-1050.

Jurafsky, Daniel & James H. Martin. 2015. Speech and language processing. an
introduction to natural language processing, computational linguistics, and
speech recognition. Dra� of the 3rd edition.

Malouf, Robert. 2002a. A comparison of algorithms for maximum entropy parameter
estimation. In�e 6th conference on natural language learning 2002 (conll-2002), .

Malouf, Robert. 2002b. Markov models for language-independent named entity
recognition. In�e 6th conference on natural language learning 2002 (conll-2002), .

Ratnaparkhi, Adwait. 1997. A simple introduction to maximum entropy models for
natural language processing. Tech. Rep. 97–08 Institue for Research in Cognitive
Science, University of Pennsylvania.

Ratnaparkhi, Adwait. 1998. Maximum entropy models for natural language ambiguity
resolution: University of Pennsylvania dissertation.

24 / 24

http://dl.acm.org/citation.cfm?id=234285.234289
http://www.aclweb.org/anthology/P07-1050

	Motivation
	MaxEnt classification
	Parameter estimation

