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Introduction

Classi�cation = supervised method for classifying an input,
given a �nite set of possible classes.
Today: Discriminative classi�er based on features of the input.

Jurafsky & Martin (2015), chapter 7, Berger et al. (1996); Ratnaparkhi
(1997, 1998)
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Motivation

Just like naive Bayes, logistic regression (= maximum entropy
modeling,MaxEnt)

extracts a set of weighted features from the input,
takes logs,
and combines them linearly.

But: naive Bayes is a generative classi�er while MaxEnt is a
discriminative classi�er.
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Motivation

Generative classi�er: estimates the best class c for a given x
indirectly from P(x∣c) and P(c)

argmax
c

P(c∣x) = argmax
c

P(x∣c)P(c)
P(x)

= argmax
c

P(x∣c)P(c)

I.e., the classi�er models how to generate the data x from a
class c.

Discriminative classi�er: directly computes P(c∣x) by dis-
criminating among the di�ernt possibles classes c.

argmax
c

P(c∣x)
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MaxEnt classi�cation

Logistic regression (MaxEnt) is a linear classi�er: it estimates
P(c∣x) by

extracting some set of features from the input,
combining these features linearly (= multiplying each by a
weight and adding them up)
and then applying a function to this linear combination.
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MaxEnt classi�cation

A linear combination of k weighted features would be

k

∑
i=1

wifi = w⃗ ⋅ f⃗

where w⃗ is the vector of the weights, f⃗ the feature vector.

But: this linear combination can be any real number, it does not give a
probability. �erefore we

1 �rst turn
k

∑
i=1

wifi into something positive by replacing it with

exp∑k
i=1wifi = e∑

k
i=1 wifi , and

2 then normalize the result in order to obtain values between 0
and 1.
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MaxEnt classi�cation

Reminder: e0 = 1, e1 = 2.7182818 . . .
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MaxEnt classi�cation

�e values of our features depend not only on the observation (for
instance the document one wants to classify) but also on the class.

Intuition behind this: a feature f can be discriminative for one class
but maybe not for another class.

For an observation x that we want to classify and a class c from the
set of possible classes C, we therefore consider features fi(c, x) and
our positive value becomes

e∑
k
i=1 wifi(c,x)

.
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MaxEnt classi�cation

With a further normalization step, in order to turn these values into
probabilities, we obtain

P(c∣x) =
1
Z
e∑

k
i=1 wifi(c,x)

where 1
Z is the normalization factor

1

∑c′∈C e∑
k
i=1 wifi(c′,x)

Consequently,

P(c∣x) =
e∑

k
i=1 wifi(c,x)

∑c′∈C e∑
k
i=1 wifi(c′,x)
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MaxEnt classi�cation
If we are not interested in the probability itself but only in the best
class ĉ for some observation x, we can compute

ĉ = argmax
c∈C

P(c∣x)

= argmax
c∈C

e∑
k
i=1 wifi(c,x)

∑c′∈C e∑
k
i=1 wifi(c′,x)

= argmax
c∈C

e∑
k
i=1 wifi(c,x)

= argmax
c∈C

∑
k
i=1wifi(c, x)

In other words, for some observation x, we assign the class with the
highest weighted sum of feature values.

When the classi�er is embedded into some larger system it can,
however, be useful to calculate the probability.
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MaxEnt classi�cation
Features that take only values 0 or 1 are called indicator functions.

Example adapted from Jurafsky & Martin (2015)
Goal: sentiment analysis C = {+,−}. Some possible features and weights:

f1(c, x) = {
1 if “great” ∈ x and c = +
0 otherwise w1 = 1.9

f2(c, x) = {
1 if “second-rate” ∈ x and c = −
0 otherwise w2 = 0.9

f3(c, x) = {
1 if “no” ∈ x and c = −
0 otherwise w3 = 0.7

f4(c, x) = {
1 if “enjoy” ∈ x and c = −
0 otherwise w4 = −0.8

f5(c, x) = {
1 if “great” ∈ x and c = −
0 otherwise w5 = −0.6
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MaxEnt classi�cation

Example continued
Observation x: “… there are virtually no surprises, and the writing is
second-rate. So why did I enjoy it so much? For one thing, the cast is
great …”

Weighted feature sums:
class +: 1.9 + 0 + 0 + 0 + 0 = 1.9
class −: 0 + 0.9 + 0.7 − 0.8 − 0.6 = 0.2

P(+∣x) = e1.9
e1.9+e0.9e0.7e−0.8e−0.6 =

e1.9
e1.9+e0.2 = 0.85

P(−∣x) = e0.2
e1.9+e0.2 = 0.15

We o�en have a large number of features.
Features can be created automatically via feature templates.
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MaxEnt classi�cation
Example adapted from Malouf (2002a)
Now consider a constituency parsing task. �e ME classi�er ranks
the di�erent parse trees that are possible for some input string w.

Features of tree t weights
f1: # of usage of S → NP VP in tree t 1
f2: # of usages of VP → NP V in tree t 0.6
f3: # of usages of VP → V in tree t 0.4
f4: # of usages of NP → N N in tree t 0.1
f5: # of usages of NP → N in tree t 0.9

Input: w =NNV.�estion: Which is the best parse tree?

t1: t2:
S

VP

VNP

N

NP

N

S

VP

V

NP

NN

t1: 1 + 0.6 + 0 + 0 + 1.8 = 3.4, t2: 1 + 0 + 0.4 + 0.1 = 1.5
t1 is the be�er parse tree according to this ME model.
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Parameter estimation

�estion: Given the features, how do we learn the parameters of the
model, i.e., the weights wi?

Logistic regression is trained with conditional maximum
likelihood estimation.

We choose the weights w⃗ = ⟨w1, . . . ,wk⟩ that maximize the (log)
probability of the class labels of the training data.
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Parameter estimation
For a single training observation x and its class c we have

ˆ⃗w = argmax
w⃗

logP(c∣x)

and for all training observations x1, . . . , xN with their classes
c1, . . . , cN , we obtain

ˆ⃗w = argmax
w⃗

N

∑
j=1

logP(cj ∣xj)

(Reminder: log
N

∏
j=1

P(cj ∣xj) =
N

∑
j=1

log P(cj ∣xj).)

�e objective function we are maximizing is thus

L(w⃗) =
N

∑
j=1

logP(cj ∣xj)
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Parameter estimation

Using the previously given de�nition of P(cj ∣xj), this means

L(w⃗) =
N

∑
j=1

logP(cj ∣xj)

=
N

∑
j=1

log
e∑

k
i=1 wifi(cj ,xj)

∑c′∈C e∑
k
i=1 wifi(c′,xj)

=
N

∑
j=1
(log e∑

k
i=1 wifi(cj ,xj) − log(∑

c′∈C
e∑

k
i=1 wifi(c′,xj)))

=
N

∑
j=1

log e∑
k
i=1 wifi(cj ,xj) −

N

∑
j=1

log(∑
c′∈C

e∑
k
i=1 wifi(c′,xj))
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Parameter estimation

One way to estimate our parameters is by generalized iterative
scaling (see Ratnaparkhi (1997)). Assume that we have only indicator
functions. �e algorithm works if the following constraints are
satis�ed for all training observations xj and their associated classes cj ,
1 ≤ j ≤ N :

1
k

∑
i=1

fi(cj, xj) = m for some constant m.

2 �ere is at least one i, 1 ≤ i ≤ k such that fi(xj) = 1.

If the �rst condition is not satis�ed, we can add a (k + 1)st feature
fk+1 with values as follows:

For all xj , 1 ≤ j ≤ N , fk+1(xj) = m −
k

∑
i=1

fi(xj). (Note that this feature is

not an indicator function.)
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Parameter estimation
�e learning algorithm iteratively re�nes the weight vector. Assume
that we have training observations x1, . . . , xN with classes c1, . . . , cN .
We start with

w(0)i = 1 for all i, 1 ≤ i ≤ k

and the iteration step is

w(n+1)i = w(n)i

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1
N

N

∑
j=1

fi(cj, xj)

N

∑
j=1

p̃(xj)∑
c∈C

P(n)(c∣xj)fi(c, xj)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

1
m

for all i, 1 ≤ i ≤ k

where p̃(xj) the observed probability of xj in the training data and
P(n)(c∣xj) is the probability we obtain for c given xj with the weights
of the nth iteration step.
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Parameter estimation

1
N

N

∑
j=1

fi(cj, xj)

is the average value of fi on our training data while

P(n)(fi) =
N

∑
j=1

p̃(xj)∑
c∈C

P(n)(c∣xj)fi(c, xj)

is the expected value of fi with respect to the model P(n)

�e closer the expected value is to the actual value on the training set,
the smaller becomes the weight di�erence ∣w(n+1)i −w(n)i ∣.
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Parameter estimation
Example
Classes A and B, observations are x ∈ {a, b}∗.
Features:

f1(c, x) = {
1 if ∣x∣a > 0, c = A
0 otherwise

f2(c, x) = {
1 if ∣x∣b > 0, c = B
0 otherwise

Training data:
x1 = aa c1 = A p̃(x1) = 1

4
x2 = ab c2 = A p̃(x2) = 1

4
x3 = ba c3 = A p̃(x3) = 1

4
x4 = bb c4 = B p̃(x4) = 1

4

m = 1, 14
4
∑
j=1

f1(cj, xj) =
3
4
and 1

4

4
∑
j=1

f2(cj, xj) =
1
4

w(0)1 = w(0)2 = 1

w(1)1 = 1 ⋅
3
4

0.25(P(0)(A∣x1)+P(0)(A∣x2)+P(0)(A∣x3))
= 3

e
e+1+

e
e+e+

e
e+e

= 1.73

w(1)2 = 1 ⋅ 0.25
0.25(P(0)(B∣x2)+P(0)(B∣x3)+P(0)(B∣x4))

= 1
e

e+e+
e

e+e+
e

e+1
= 0.58
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Parameter estimation

Example continued

w(0)1 = w(0)2 = 1

w(1)1 = 1 ⋅
3
4

0.25(P(0)(A∣x1)+P(0)(A∣x2)+P(0)(A∣x3))
= 3

e
e+1+

e
e+e+

e
e+e

= 3e+3
2e+1 = 1.73

w(1)2 = 1 ⋅ 0.25
0.25(P(0)(B∣x2)+P(0)(B∣x3)+P(0)(B∣x4))

= 1
e

e+e+
e

e+e+
e

e+1
= e+1

2e+1 = 0.58

w(2)1 = 3
e1.73

e1.73+1+
e1.73

e1.73+e0.58 +
e1.73

e1.73+e0.58
= 3

5.64
6.64+

5.64
7.43+

5.64
7.43

= 1.27

w(2)2 = 1
e0.58

e0.58+e1.73 +
e0.58

e0.58+e1.73 +
e0.58

e0.58+1
= 1

1.79
7.43+

1.79
7.43+

1.79
2.79

= 0.89

w(3)1 = 3
e1.27

e1.27+1+
e1.27

e1.27+e0.89 +
e1.27

e1.27+e0.89
= 3

3.56
4.56+

3.56
6.00+

3.56
6.00

= 1.52

w(3)2 = 1
e0.89

e0.89+e1.27 +
e0.89

e0.89+e1.27 +
e0.89

e0.89+1
= 1

2.44
6.00+

2.44
6.00+

2.44
3.44

= 0.66
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Applications

MaxEnt is a very �exible classi�er that can be applied to a lot of
di�erent problems. Applications are (among others)

Named Entity Recognition (Malouf, 2002b)

POS tagging (Ratnaparkhi, 1998)

Dependency parsing (Hall, 2007)
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