Machine Learning Exercises: vector semantics

Laura Kallmeyer

Summer 2016, Heinrich-Heine-Universität Düsseldorf

Exercise 1 Consider the following word-context matrix with the three words "orange", "banana" and "car" and the three context words "juice", "the" and "drive".

	juice	the	drive
orange	10	20	0
banana	8	20	θ
car	1	20	10

- 1. Compute the MLEs using frequencies for the probabilities P(w), P(c) and P(w, c) for each word w and each context word c.
- 2. Based on these, compute the PPMI values for the cells in the matrix.
- 3. Now compute the cosine similarity values of the PPMI vectors for "orange" and "banana" and for "orange" and "car".

Solution:

		juice	the	drive	P(w)
	orange	$\frac{10}{89}$	$\frac{20}{89}$	0	$\frac{30}{89}$
1.	banana	$\frac{\overline{89}}{\overline{89}}$	$\frac{20}{89}$	0	$\frac{28}{89}$
	car	$\frac{1}{89}$	$\frac{20}{89}$	$\frac{10}{89}$	$\frac{31}{89}$
	P(c)	$\frac{19}{89}$	$\frac{60}{89}$	$\frac{10}{89}$	

2.
$$PPMI(w,c) = \max(\log_2 \frac{P(w,c)}{P(w)P(c)}, 0$$

	juice	the	drive				
orange	0.64	0	0				
banana	0.42	$8.33 \cdot 10^{-2}$	0				
car	0	0	1.52				
orange, juice: $\log_2 \frac{\frac{10}{89}}{\frac{30}{89}\frac{19}{89}} = \log_2 \frac{89}{57}$							
banana, juice: $\log_2 \frac{\frac{8}{89}}{\frac{28}{89} \frac{19}{89}} = \log_2 \frac{8 \cdot 89}{28 \cdot 19}$							

car, juice: $\log_2 \frac{\frac{1}{89}}{\frac{31}{89}\frac{1}{89}\frac{1}{89}} = \log_2 \frac{89}{31 \cdot 19} < 0$

orange, the: $-1.63\cdot 10^{-2}$ $\,$ banana, the: $8.33\cdot 10^{-2}$ $\,$ car, the: $-6.36\cdot 10^{-2}$ car, drive: 1.52

3. $CosSim(\vec{v}, \vec{w}) = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}| |\vec{w}|} = \frac{\sum_{i=1}^{n} v_i w_i}{\sqrt{\sum_{i=1}^{n} v_i^2} \sqrt{\sum_{i=1}^{n} w_i^2}}$

orange, banana: $\frac{0.64 \cdot 0.42}{0.64 \cdot \sqrt{0.42^2 + 0.0833^2}} = 0.98$ orange, car: 0