Machine Learning Exercises: Naive Bayes

Laura Kallmeyer

Summer 2016, Heinrich-Heine-Universität Düsseldorf

Exercise 1 Consider again the training data from slide 9: We have classes A and B and a training set of class-labeled documents:

Training data:			
d	c	d	c
aa	A	ba	\overline{A}
ab	A	bb	B

- 1. Calculate P(A), P(B), P(a|A), P(b|A), P(a|B), P(b|B) using Laplace smoothing for the conditional probabilities.
- 2. Now classify the following new data, deleting all unknown words:

Documents:
aaba
a
bbba
bccbba
bbbb

Solution:

1.
$$P(A) = 0.75, P(B) = 0.25.$$

 $P(a|A) = \frac{5}{8}, P(b|A) = \frac{3}{8}$
 $P(a|B) = \frac{1}{4}, P(b|B) = \frac{3}{4}$
2.
aaba A: $\frac{3}{4} \cdot \frac{5}{8} \cdot \frac{5}{8} \cdot \frac{3}{8} \cdot \frac{5}{8} = \frac{1125}{16384} = 0.07$
 $B: \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{3}{4} \cdot \frac{1}{4} = \frac{3}{1024} = 0.003$
 $\Rightarrow class A is assigned to aaba$
 a A: $\frac{3}{4} \cdot \frac{5}{8} = \frac{15}{32} = 0.47$
 $B: \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{16} = 0.06$
 $\Rightarrow class A is assigned to aaba$
 $bbba$ A: $\frac{3}{4} \cdot \frac{3}{8} \cdot \frac{3}{8} \cdot \frac{3}{8} \cdot \frac{5}{8} = \frac{405}{16384} = 0.025$
 $B: \frac{1}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{1}{4} = \frac{27}{1024} = 0.026$
 $\Rightarrow class B is assigned to bbba$
 $bccbba$ same class as $bbba$
 $bbbb$ A: $\frac{3}{4} \cdot \frac{3}{8} \cdot \frac{3}{8} \cdot \frac{3}{8} \cdot \frac{3}{8} = \frac{243}{16384} = 0.015$
 $B: \frac{1}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{81}{1024} = 0.08$
 $\Rightarrow class B is assigned to bbbb$

Exercise 2 Consider again the training data from the previous exercise and assume that we test on the following data:

Documents	gold class
aaba	$\frac{S}{A}$
a	A
bbba	A
bccbba	A
bbbb	B

Compute precision, recall, accuracy and F_1 for the classification resulting frm the training data in the previous exercise, for both classes A and B.

Solution:

Documents	gold class	system class
aaba	A	A
a	A	A
bbba	A	B
bccbba	A	B
bbbb	B	B

Evaluation for A: P = 1, $R = \frac{1}{2}$, $F_1 = \frac{2}{3}$ Evaluation for B: $P = \frac{1}{3}$, R = 1, $F_1 = \frac{1}{2}$

Accuracy is in both cases $\frac{3}{5}$

Exercise 3 Consider again the same example. Give the pooled confusion matrix for the results on the test set. Give the overall precision and recall by

- 1. macroaveraging, and
- 2. microaveraging.

Note that we have a special case here since the true positives of A are the true negatives of B and vice versa. Therefore we get a special confusion matrix.

Solution:

Pooled confusion matrix:

	gold yes	gold no
system yes	3	2
system no	2	3

1. macroaveraging:

P =	$\frac{1}{2}(1 +$	$\frac{1}{3}$	=	$\frac{2}{3}$
R =	$\frac{1}{2}(\frac{1}{2} +$	· 1)	=	$\frac{3}{4}$

2. microaveraging:

 $P = \frac{3}{5}$ $R = \frac{3}{5}$

(P and R are the same in this special case where we have two classes excluding each other such that $\neg A = B$.)