Machine Learning Exercises: MaxEnt classifier

Laura Kallmeyer

Summer 2016, Heinrich-Heine-Universität Düsseldorf

Exercise 1 Consider the following MaxEnt classifier for documents $d \in \{a, b\}^*$.

Features:

$$f_1(c,x) = \begin{cases} 1 & \text{if } |x|_a > 0, c = A \\ 0 & \text{otherwise} \end{cases}$$

$$f_2(c,x) = \begin{cases} 1 & \text{if } |x|_b > 0, c = B \\ 0 & \text{otherwise} \end{cases}$$

Weights: $w_1 = 1.4, w_2 = 0.7$.

- Consider the following documents: d₁ = aaaa, d₂ = bbbba, d₃ = bb.
 What are the classes assigned by our classifier to these three?
- 2. What are the probabilities of d_1 , d_2 and d_3 being in class A?

Solution:

1. In order to assign the class, it is sufficient to compare the weighted feature sums:

$$d_{1}: \sum_{i=1}^{2} w_{i}f_{i}(A, d_{1}) = 1.4, \qquad \sum_{i=1}^{2} w_{i}f_{i}(B, d_{1}) = 0$$
$$d_{2}: \sum_{i=1}^{2} w_{i}f_{i}(A, d_{1}) = 1.4, \qquad \sum_{i=1}^{2} w_{i}f_{i}(B, d_{1}) = 0.7$$
$$d_{3}: \sum_{i=1}^{2} w_{i}f_{i}(A, d_{1}) = 0, \qquad \sum_{i=1}^{2} w_{i}f_{i}(B, d_{1}) = 0.7$$

Consequently, the classifier assigns A to d_1 and to d_2 and B to d_3 .

2. $P(A|d_1) = \frac{e^{w_1 f_1(A,d_1) + w_2 f_2(A,d_1)}}{e^{w_1 f_1(A,d_1) + w_2 f_2(A,d_1)} + e^{w_1 f_1(B,d_1) + w_2 f_2(B,d_1)}} = \frac{e^{1.4}}{e^{1.4} + 1} = 0.8$ $P(A|d_2) = \frac{e^{1.4}}{e^{1.4} + e^{0.7}} = 0.67$ $P(A|d_3) = \frac{1}{1 + e^{0.7}} = 0.33$

Exercise 2 Assume that we want to build a MaxEnt classifier that assigns a class $c \in \{X, Y\}$ to symbols $x \in \{a, b, c\}$ that are part of a sequence $w \in \{a, b, c\}^+$.

Our training data:

observed sequence	a	a	b	a	b	a	c	c	a	b	c	a	b	a
classes	X	X	X	Y	X	Y	Y	X	X	X	Y	X	X	Y

What would be reasonable features for our classifier? Only indicator functions are allowed, i.e., features with values 0 or 1.

Solution: The neighborhood seems to be important where both the preceding and the following symbol play a role for the class of an element.

Possible indicator functions:

$$f_{t,c}(y,x) = \begin{cases} 1 \text{ if } t = x \text{ and } y = c \\ 0 \text{ otherwise} \end{cases}$$
$$f_{tl,c}(y,x) = \begin{cases} 1 \text{ if } t \text{ precedes } x \text{ and } y = c \\ 0 \text{ otherwise} \end{cases}$$
$$f_{tr,c}(y,x) = \begin{cases} 1 \text{ if } x \text{ precedes } t \text{ and } y = c \\ 0 \text{ otherwise} \end{cases}$$

for all $t \in \{a, b, c\}$ and $c \in \{X, Y\}$.