Machine Learning Exercises: language models (n-grams)

Laura Kallmeyer

Summer 2016, Heinrich-Heine-Universität Düsseldorf

Exercise 1 Consider the following toy example (similar to the one from Jurafsky \mathcal{B} Martin (2015)):
Training data:
<s> I am Sam </s>
<s> Sam I am </s>
<s> Sam I like </s>
<s> Sam I do like </s>
<s> do I like Sam </s>

Assume that we use a bigram language model based on the above training data.

1. What is the most probable next word predicted by the model for the following word sequences?
(1) <s>Sam...
(2) <s> Sam I do...
(3) <s>Sam I am Sam...
(4) <s> do I like...
2. Which of the following sentences is better, i.e., gets a higher probability with this model?
```
<s> Sam I do I like </s>
<s> Sam I am </s>
<s> I do like Sam I am </s>
```

Solution:
Bigram probabilities:

$$
\begin{array}{lll}
P(\mathrm{Sam} \mid\langle\mathrm{s}\rangle)=\frac{3}{5} & P(\mathrm{I}|<\mathrm{s}\rangle)=\frac{1}{5} & \\
P(\mathrm{I} \mid \mathrm{Sam})=\frac{3}{5} & P(\langle/ \mathrm{s}\rangle \mid \mathrm{Sam})=\frac{2}{5} & \\
P(\mathrm{Sam} \mid \mathrm{am})=\frac{1}{2} & P(</ \mathrm{s}\rangle \mid \mathrm{am})=\frac{1}{2} & \\
P(\mathrm{am} \mid \mathrm{I})=\frac{2}{5} & P(\text { like } \mid \mathrm{I})=\frac{2}{5} & P(\mathrm{do} \mid \mathrm{I})=\frac{1}{5} \\
P(\text { Sam } \mid \text { like })=\frac{1}{3} & P(</ \mathrm{s}\rangle \mid \text { like })=\frac{2}{3} & \\
P(\text { like } \mathrm{do})=\frac{1}{2} & P(\mathrm{I} \mid \text { do })=\frac{1}{2} &
\end{array}
$$

1. (1) and (3): "I".
(2): "I" and "like" are equally probable.
(4): </s>
2. Probabilities:
(5): $\frac{3}{5} \cdot \frac{3}{5} \cdot \frac{1}{5} \cdot \frac{1}{2} \cdot \frac{2}{5} \cdot \frac{2}{3}$
(6): $\frac{3}{5} \cdot \frac{3}{5} \cdot \frac{2}{5} \cdot \frac{1}{2}$
(7): $\frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{3}{5} \cdot \frac{2}{5} \cdot \frac{1}{2}$
(6) is the most probable sentence according to our language model.

Exercise 2 Consider again the same training data and the same bigram model. Compute the perplexity of
<s> I do like Sam

Solution:
The probability of this sequence is $\frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{2} \cdot \frac{1}{3}=\frac{1}{150}$.
The perplexity is then $\sqrt[4]{150}=3.5$
Exercise 3 Take again the same training data. This time, we use a bigram LM with Laplace smoothing.

1. Give the following bigram probabilities estimated by this model:

$$
\begin{array}{llll}
P(\mathrm{do}|<\mathrm{s}\rangle) & P(\mathrm{do} \mid \mathrm{Sam}) & P(\mathrm{Sam}|<\mathrm{s}\rangle) & P(\text { Sam } \mid \mathrm{do}) \\
P(\mathrm{I} \mid \mathrm{Sam}) & P(\mathrm{I} \mid \mathrm{do}) & P(\text { like } \mid \mathrm{I}) &
\end{array}
$$

Note that for each word w_{n-1}, we count an additional bigram for each possible continuation w_{n}. Consequently, we have to take the words into consideration and also the symbol </s>.
2. Calculate the probabilities of the following sequences according to this model:

```
<s> do Sam I like
(9) <s> Sam do I like
```

Which of the two sequences is more probable according to our LM?
Solution:

1. If we include </s> (this can also appear as second element of a bigram), we get $|V|=6$ for our vocabulary.

$$
\begin{array}{llll}
P(\mathrm{do} \mid\langle\mathrm{s}\rangle)=\frac{2}{11} & P(\mathrm{do} \mid \mathrm{Sam})=\frac{1}{11} & P(\mathrm{Sam}|<\mathrm{s}\rangle)=\frac{4}{11} & P(\mathrm{Sam} \mid \mathrm{do})=\frac{1}{8} \\
P(\mathrm{I} \mid \mathrm{Sam})=\frac{4}{11} & P(\mathrm{I} \mid \mathrm{do})=\frac{2}{8} & P(\text { like } \mid \mathrm{I})=\frac{3}{11} &
\end{array}
$$

2. (8): $\frac{2}{11} \cdot \frac{1}{8} \cdot \frac{4}{11} \cdot \frac{3}{11}$
(9): $\frac{4}{11} \cdot \frac{1}{11} \cdot \frac{2}{8} \cdot \frac{3}{11}$

The two sequences are equally probable.

References

Jurafsky, Daniel \& James H. Martin. 2015. Speech and language processing. an introduction to natural language processing, computational linguistics, and speech recognition. Draft of the 3rd edition.

