Machine Learning Exercises: kNN

Laura Kallmeyer

Summer 2016, Heinrich-Heine-Universität Düsseldorf

Exercise 1 Consider the k nearest neighbor example from slide 20, with the following term frequency counts:

Training:	Class l			$Class \ c$		new docs:	
terms	d_1	d_2	d_3	d_4	d_5	d_6	d_7
love	10	8	$\tilde{7}$	0	1	5	1
kiss	5	6	4	1	0	6	0
inspector	$\mathcal{2}$	θ	0	12	8	2	12
murderer	0	1	0	20	56	0	4

1. Replace these counts with the corresponding $tf_{td}idf_t$ weights.

2. Then normalize the vectors of the $tf_{td}idf_t$ weights of d_1, d_4, d_6 and d_7 and calculate the Euclidian distances between each of the test documents d_6, d_7 and each of these training documents.

Solution:

1. "love" and "kiss" both appear in 4 out ot 5 documents, "inspector" and "murderer" in 3 out ot 5. Consequently, for the first two, we multiply the count with $\log \frac{5}{4} = 0.1$ and for the latter two, we multiply with $\log \frac{5}{3} = 0.22$.

Training:	Class l			Class c		new docs:	
terms	d_1	d_2	d_3	d_4	d_5	d_6	d_7
love	1	0.8	0.7	0	0.1	0.5	0.1
kiss	0.5	0.6	0.4	0.1	0	0.6	0
inspector	0.44	0	0	2.64	1.76	0.22	2.64
murderer	0	0.22	0	4.4	12.32	0	0.88

2. normalized vectors for d_1 (division by 1.2), d_4 (division by 5.13), d_6 (division by 0.81) and d_7 (division by 2.78):

	d_1	d_4	d_6	d_7
love	0.83	0	0.62	0.04
kiss	0.42	0.02	0.74	0
inspector	0.37	0.51	0.27	0.95
murderer	0	0.86	0	0.32

Euclidian distances:

 d_1 and d_6 : $\sqrt{0.1638} = 0.4$ d_4 and d_6 : $\sqrt{1.4101} = 1.19$ d_1 and d_7 : $\sqrt{1.2393} = 1.11$ d_4 and d_7 : $\sqrt{0.4872} = 0.7$

Exercise 2 Now consider the weighted score on slide 27:

$$score(c,d) = \sum_{d_t \in S_k(d)} I_c(d_t) \cos(\vec{v}(d_t), \vec{v}(d))$$

where $\vec{v}(d)$ is the vector of some document d.

Normalize this score so that we obtain a probability P(c|d).

Solution:

$$P(c|d) = \frac{\sum_{d_t \in S_k(d)} I_c(d_t) \cos(\vec{v}(d_t), \vec{v}(d))}{\sum_{d_t \in S_k(d)} \cos(\vec{v}(d_t), \vec{v}(d))}$$

Exercise 3 Assume that we have two classes, A and B and a new document d to be classified. The following training data is available:

d_i	class	$\cos(\vec{v}(d_i), \vec{v}(d))$
d_1	A	1
d_2	B	0.95
d_3	B	0.94
d_4	A	0.45
d_5	A	0.4
d_6	B	0.39

Let us assume that we use the cosine as a distance measure, i.e., the higher the cosine, the closer are two vectors.

Which class would be assigned to d with a k-nearest neighbor classifier using cosine if

- 1. k = 3 and simple majority vote (score as in slide 23);
- 2. k = 5 and simple majority vote;
- 3. k = 3 and a weighted score as in slide 27;
- 4. k = 5 and a weighted score as in slide 27.

Solution:

- 1. k = 3 and simple majority vote: score(A, d) = 1, score(B, d) = 2, therefore class B
- 2. k = 5 and simple majority vote: score(A, d) = 3, score(B, d) = 2, therefore class A
- 3. k = 3 and a weighted score as in slide 27: score(A, d) = 1, score(B, d) = 0.95 + 0.94, therefore class B
- 4. k = 5 and a weighted score as in slide 27: score(A, d) = 1 + 0.45 + 0.4, score(B, d) = 0.95 + 0.94, therefore class B