Machine Learning
 Exercises: kNN

Laura Kallmeyer

Summer 2016, Heinrich-Heine-Universität Düsseldorf
Exercise 1 Consider the k nearest neighbor example from slide 20, with the following term frequency counts:

Training:	Class l			Class c		new docs:	
terms	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}	d_{7}
love	10	8	7	0	1	5	1
kiss	5	6	4	1	0	6	0
inspector	2	0	0	12	8	2	12
murderer	0	1	0	20	56	0	4

1. Replace these counts with the corresponding $t f_{t d} i d f_{t}$ weights.
2. Then normalize the vectors of the $t f_{t d} i d f_{t}$ weights of d_{1}, d_{4}, d_{6} and d_{7} and calculate the Euclidian distances between each of the test documents d_{6}, d_{7} and each of these training documents.

Solution:

1. "love" and "kiss" both appear in 4 out ot 5 documents, "inspector" and "murderer" in 3 out ot 5 . Consequently, for the first two, we multiply the count with $\log \frac{5}{4}=0.1$ and for the latter two, we multiply with $\log \frac{5}{3}=0.22$.

Training:	Class l			Class c		new docs:	
terms	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}	d_{7}
love	1	0.8	0.7	0	0.1	0.5	0.1
kiss	0.5	0.6	0.4	0.1	0	0.6	0
inspector	0.44	0	0	2.64	1.76	0.22	2.64
murderer	0	0.22	0	4.4	12.32	0	0.88

2. normalized vectors for d_{1} (division by 1.2), d_{4} (division by 5.13), d_{6} (division by 0.81) and d_{7} (division by 2.78):

	d_{1}	d_{4}	d_{6}	d_{7}
love	0.83	0	0.62	0.04
kiss	0.42	0.02	0.74	0
inspector	0.37	0.51	0.27	0.95
murderer	0	0.86	0	0.32

Euclidian distances:
d_{1} and $d_{6}: \sqrt{0.1638}=0.4$
d_{4} and $d_{6}: \sqrt{1.4101}=1.19$
d_{1} and $d_{7}: \sqrt{1.2393}=1.11$
d_{4} and $d_{7}: \sqrt{0.4872}=0.7$
Exercise 2 Now consider the weighted score on slide 27:

$$
\operatorname{score}(c, d)=\sum_{d_{t} \in S_{k}(d)} I_{c}\left(d_{t}\right) \cos \left(\vec{v}\left(d_{t}\right), \vec{v}(d)\right)
$$

where $\vec{v}(d)$ is the vector of some document d.

Normalize this score so that we obtain a probability $P(c \mid d)$.

Solution:

$$
P(c \mid d)=\frac{\sum_{d_{t} \in S_{k}(d)} I_{c}\left(d_{t}\right) \cos \left(\vec{v}\left(d_{t}\right), \vec{v}(d)\right)}{\sum_{d_{t} \in S_{k}(d)} \cos \left(\vec{v}\left(d_{t}\right), \vec{v}(d)\right)}
$$

Exercise 3 Assume that we have two classes, A and B and a new document d to be classified.
The following training data is available:

d_{i}	class	$\cos \left(\vec{v}\left(d_{i}\right), \vec{v}(d)\right)$
d_{1}	A	1
d_{2}	B	0.95
d_{3}	B	0.94
d_{4}	A	0.45
d_{5}	A	0.4
d_{6}	B	0.39

Let us assume that we use the cosine as a distance measure, i.e., the higher the cosine, the closer are two vectors.
Which class would be assigned to d with a k-nearest neighbor classifier using cosine if

1. $k=3$ and simple majority vote (score as in slide 23);
2. $k=5$ and simple majority vote;
3. $k=3$ and a weighted score as in slide 27;
4. $k=5$ and a weighted score as in slide 27.

Solution:

1. $k=3$ and simple majority vote: $\operatorname{score}(A, d)=1, \operatorname{score}(B, d)=2$, therefore class B
2. $k=5$ and simple majority vote: $\operatorname{score}(A, d)=3, \operatorname{score}(B, d)=2$, therefore class A
3. $k=3$ and a weighted score as in slide 27: $\operatorname{score}(A, d)=1, \operatorname{score}(B, d)=0.95+0.94$, therefore class B
4. $k=5$ and a weighted score as in slide 27: $\operatorname{score}(A, d)=1+0.45+0.4, \operatorname{score}(B, d)=0.95+0.94$, therefore class B
