# Machine Learning Exercises: vector-based document characterizations 

Laura Kallmeyer

Summer 2016, Heinrich-Heine-Universität Düsseldorf

Exercise 1 Consider the tf-idf weighting scheme from slide 9.
Explain why we obtain $t f_{t d} i d f_{t}$ values 0 for terms occurring in all documents.

Solution:
We define the weight as

$$
w_{t d}=t f_{t d} i d f_{t}=t f_{t d} \log \left(\frac{|D|}{d f_{t}}\right)
$$

For terms occurring in all documents, we have $d f_{t}=|D|$ and therefore $i d f_{t}=\log \frac{|D|}{|D|}=\log 1=0$, consequently the entire product is 0 .

Exercise 2 Consider the following 2-dimensional vectors $\vec{v}_{1}=\langle 1,2\rangle, \overrightarrow{v_{2}}=\langle 3,6\rangle, \overrightarrow{v_{3}}=\langle 2,-1\rangle$.
Calculate

1. the normalized vectors (length 1) for $\vec{v}_{1}, \vec{v}_{2}$ and $\vec{v}_{3}$;
2. the Euclidian distances between $\vec{v}_{1}$ and $\vec{v}_{2}$ and between $\vec{v}_{1}$ and $\vec{v}_{3}$ without normalization;
3. the pairwise Euclidian distance of the corresponding normalized vectors (again between $\vec{v}_{1}$ and $\vec{v}_{2}$ and between $\vec{v}_{1}$ and $\vec{v}_{3}$ ); and
4. the cosine similarity, again for $\vec{v}_{1}$ and $\vec{v}_{2}$ and for $\vec{v}_{1}$ and $\vec{v}_{3}$.

Solution:

1. $\frac{\vec{v}_{1}}{\left|\vec{v}_{1}\right|}=\left\langle\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right\rangle=\langle 0.445,0.89\rangle$
$\frac{\vec{v}_{2}}{\left|\vec{v}_{2}\right|}=\left\langle\frac{3}{\sqrt{45}}, \frac{6}{\sqrt{45}}\right\rangle=\langle 0.445,0.89\rangle$
$\frac{\vec{v}_{3}}{\left|\vec{v}_{3}\right|}=\left\langle\frac{2}{\sqrt{5}}, \frac{-1}{\sqrt{5}}\right\rangle=\langle 0.89,-0.445\rangle$
2. $\vec{v}_{1}, \vec{v}_{2}: \sqrt{(3-1)^{2}+(6-2)^{2}}=\sqrt{4+16}=\sqrt{20}$
$\vec{v}_{1}, \vec{v}_{3}: \sqrt{(2-1)^{2}+(-1-2)^{2}}=\sqrt{1+9}=\sqrt{10}$
3. $\frac{\vec{v}_{1}}{\left|\overrightarrow{v_{1}}\right|}, \frac{\vec{v}_{2}}{\left|\vec{v}_{2}\right|}: \sqrt{(0)^{2}+(0)^{2}}=0$

$$
\frac{\vec{v}_{1}}{\left|\vec{v}_{1}\right|}, \frac{\vec{v}_{3}}{\left|\vec{v}_{3}\right|}: \sqrt{\left(\frac{2}{\sqrt{5}}-\frac{1}{\sqrt{5}}\right)^{2}+\left(-\frac{1}{\sqrt{5}}-\frac{2}{\sqrt{5}}\right)^{2}}=\sqrt{\frac{1}{5}+\frac{9}{5}}=\sqrt{2}=1.41
$$

4. $\frac{\vec{v}_{1} \cdot \vec{v}_{2}}{\left|\overrightarrow{v_{1}}\right| \cdot\left|\vec{v}_{2}\right|}=\frac{3+12}{\sqrt{5} \sqrt{45}}=\frac{15}{\sqrt{5 \cdot 45}}=1$
$\frac{\vec{v}_{1} \cdot \vec{v}_{3}}{\left|\vec{v}_{1}\right| \cdot\left|\vec{v}_{3}\right|}=\frac{2-2}{\sqrt{5} \sqrt{5}}=0$
