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Introduction

So far, we have classi�ed texts/observations independent from
the class of the previous text/observation
Today: sequence classi�er, assigning a sequence of classes to a
sequence of observations

Jurafsky & Martin (2015), chapter 8
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Motivation

Hidden Markov Models (HMMs)

are weighted �nite state automata
with states emi�ing outputs.
Transitions and emissions are weighted.
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Motivation
HMM
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qa

qb

end
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in qa, a is emi�ed with probability 0.9;
in qa, b is emi�ed with probability 0.1;
in qb, b is emi�ed with probability 0.9;
in qb, a is emi�ed with probability 0.1;

Given a sequence bb, what is the most probable path traversed by
the automaton, resulting in this output?

�e states in the automaton correspond to classes, i.e., the search for
the most probable path amounts to the search for the most probable
class sequence.

Example
POS Tagging: the classes are POS tags, the emissions are words
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Hidden Markov Models
AMarkov chain is a weighted automaton in which

weights are probabilities, i.e., all weights are between 0 and 1
and the sum of the weights of all outgoing edges of a state is 1,
and
the input sequence uniquely determines the states the automa-
ton goes through.

A Markov chain is actually a bigram language model.

Markov Chain for LM example slide 9
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Hidden Markov Models
Markov chains are useful when we want to compute the probability
for a sequence of events that we can observe.

Hidden Markov Models compute probabilities for a sequence of
hidden events, given a sequence of observed events.

Example from Jurafsky & Martin (2015), a�er Eisner (2002)
HMM for inferring weather (hot = H, cold = C) from numbers of ice
creams eaten by Jason.

start

H C

end
0.2

0.8

0.3

0.1
0.6 0.5

0.4 0.1

P(1∣H) = 0.2
P(2∣H) = 0.4
P(3∣H) = 0.4

P(1∣C) = 0.5
P(2∣C) = 0.4
P(3∣C) = 0.1
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Hidden Markov Models

HMM
A HMM is a tuple ⟨Q,A,O,B, q0, qF⟩, with

Q = {q1, . . . , qN} a �nite set of states;
A a ∣Q∣ × ∣Q∣ matrix, the transition probability matrix, with
0 ≤ aij ≤ 1 for all 1 ≤ i ≤ ∣Q∣, 1 ≤ j ≤ ∣Q∣.
O a �nite set of observations;
a sequence B of ∣Q∣ functions bi ∶ O → R, the emission probabili-
ties with ∑o∈O bi(o) = 1 for all 1 ≤ i ≤ ∣Q∣
q0,qF ∉ Q are special start and end states, associated with
transition probabilities a0i and aiF (0 ≤ a0i,aiF ≤ 1) for all
1 ≤ i ≤ ∣Q∣.

For all i, 0 ≤ i ≤ ∣Q∣, it holds that ∑∣Q∣j=1 aij + aiF = 1.
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Hidden Markov Models

First order HMMs make the following simplifying assumptions:

1 Markov assumption: In a sequence of states qi1 . . .qin , we
assume

P(qin ∣qi1 . . . qin−1) = P(qin ∣qin−1)(= ain−1in)

2 Output independence: In a sequence of states qi1 . . .qin with
the associated output sequence oi1 . . . oin , we assume

P(oij ∣qi1 . . . qij . . . qin−1 , oi1 . . . oij . . . oin−1) = P(oij ∣qij)(= bij(oij )
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Hidden Markov Models

�e following three fundamental problems have to be solved:

1 Likelihood: Given an HMM and an observation sequence,
determine the likelihood of the observation sequence.

2 Decoding: Given an HMM and an observation sequence, dis-
cover the best hidden state sequence leading to these observa-
tions.

3 Learning: Given the set of states of an HMM and an observa-
tion sequence, learn the HMM parameters A and B.
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Likelihood computation
Given an HMM and an observation o = o1 . . .on, determine the
likelihood of the observation sequence o.

For a speci�c state sequence q = q1 . . .qn ∈ Qn, we have

P(o,q) = P(o∣q)P(q)

and with our independence assumptions

P(o,q) =
n

∏
i=1

P(oi∣qi)
n

∏
i=1

P(qi∣qi−1)

For the probability of o, we have to sum over all possible state
sequences:

P(o) = ∑
q∈Qn

n

∏
i=1

P(oi∣qi)
n

∏
i=1

P(qi∣qi−1)P(qF ∣qn)
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Likelihood computation

Computing each element of the sum independently from the others
would lead to an exponential time complexity.

Instead, we adopt the forward algorithm that implements some
dynamic programming.

Idea: We �ll a n × ∣Q∣ matrix α such that

αij = P(o1 . . .oi,qi = qj)

Forward algorithm
1 α1j = a0jbj(o1) for 1 ≤ j ≤ ∣Q∣
2 αij = ∑∣Q∣k=1 αi−1kakjbj(oi) for 1 ≤ i ≤ n and 1 ≤ j ≤ ∣Q∣
3 P(o) = ∑∣Q∣k=1 αnkakF
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Likelihood computation

Ice cream weather example continued

start

H C

end
0.2

0.8 0.3

0.1
0.6 0.5

0.4

0.1

P(1∣H) = 0.2
P(2∣H) = 0.4
P(3∣H) = 0.4

P(1∣C) = 0.5
P(2∣C) = 0.4
P(3∣C) = 0.1

P(313):
H 0.32 3.92 ⋅ 10−2 1.79 ⋅ 10−2
C 2 ⋅ 10−2 5.3 ⋅ 10−2 3.81 ⋅ 10−3

3 1 3

α1j = a0jbj(o1)
αij = ∑∣Q∣k=1 αi−1kakjbj(oi)
P(o) = ∑∣Q∣k=1 αnkakF

P(313) =2.17 ⋅ 10−3
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Likelihood computation

Alternatively, we can also compute the backward probability β.

For a given observation oi in our observation sequence, the forward
probability considers the part from o1 to oi while the backward
probability considers the part from oi+1 to on.

Idea: We �ll a n × ∣Q∣ matrix β such that

βij = P(oi+1 . . .on,qi = qj)

Backward algorithm
1 βnj = ajF for 1 ≤ j ≤ ∣Q∣
2 βij = ∑∣Q∣k=1 βi+1kajkbk(oi+1) for 1 ≤ i < n and 1 ≤ j ≤ ∣Q∣
3 P(o) = ∑∣Q∣k=1 a0kbk(o1)β1k
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Likelihood computation

Ice cream weather example continued

start

H C

end
0.2

0.8 0.3

0.1
0.6 0.5

0.4

0.1

P(1∣H) = 0.2
P(2∣H) = 0.4
P(3∣H) = 0.4

P(1∣C) = 0.5
P(2∣C) = 0.4
P(3∣C) = 0.1

observed sequence 313:

H 6.38 ⋅ 10−3 2.7 ⋅ 10−2 0.1
C 7.4 ⋅ 10−3 2.1 ⋅ 10−2 0.1

3 1 3

βnj = ajF
βij = ∑∣Q∣k=1 βi+1kajkbk(oi+1)
P(o) = ∑∣Q∣k=1 a0kbk(o1)β1k

P(313) = 2.17 ⋅ 10−3
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Decoding

Given an HMM and an observation o = o1 . . .on, determine the most
probable state sequence q = q1 . . .qn ∈ Qn for o.

argmax
q∈Qn

P(o,q) = argmax
q∈Qn

P(o∣q)P(q)

and with our independence assumptions

argmax
q∈Qn

P(o,q) = argmax
q∈Qn

n

∏
i=1

P(oi∣qi)
n

∏
i=1

P(qi∣qi−1)
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Decoding
For the computation, we use the viterbi algorithm, which is very
similar to the forward algorithm except that, instead of computing
sums, we compute maxs.

We �ll a n × ∣Q∣ matrix v such that

vij = max
q∈Qi−1

P(o1 . . .oi,q1 . . .qi−1,qi = qj)

Viterbi algorithm
1 v1j = a0jbj(o1) for 1 ≤ j ≤ ∣Q∣
2 vij = max1≤k≤∣Q∣ vi−1kakjbj(oi) for 1 ≤ i ≤ n and 1 ≤ j ≤ ∣Q∣
3 maxq∈Qn P(o,q) = max1≤k≤∣Q∣ vnkakF

In addition, in order to retreive the best state sequence, each entry
vij is equipped with a backpointer to the state that has lead to the
maximum.
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Decoding

Ice cream weather example continued

start

H C

end
0.2

0.8 0.3

0.1
0.6 0.5

0.4

0.1

P(1∣H) = 0.2
P(2∣H) = 0.4
P(3∣H) = 0.4

P(1∣C) = 0.5
P(2∣C) = 0.4
P(3∣C) = 0.1

output sequence 313:

H 32 ⋅ 10−2, start 384 ⋅ 10−4, H 9216 ⋅ 10−6, H
C 2 ⋅ 10−2, start 480 ⋅ 10−4, H 24 ⋅ 10−4, C

3 1 3
v1j = a0jbj(o1) for 1 ≤ j ≤ ∣Q∣
vij = max1≤k≤∣Q∣ vi−1kakjbj(oi) for 1 ≤ i ≤ n and 1 ≤ j ≤ ∣Q∣
maxq∈Qn P(o, q) = max1≤k≤∣Q∣ vnkakF

most probable weather sequence is HHH with probability 9216 ⋅ 10−7
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Training
Supervised HMM Training: Given a sequence of observations o and a
corresponding sequence of states q, learn the parameters A and B of
an HMM.
MLE via the counts of qiqj sequences and of pairs qi, oj of states and
observations in our training data, eventually with some smoothing.

More challenging: Unsupervised HMM Training: Given an
observation sequence o and a state set Q, estimate A and B.

Example
ice cream – weather case: we have a sequence of observations
o ∈ {1, 2, 3}n and we know that the possible states are Q =
{H ,C}.
POS tagging: we have a sequence of words o ∈
{w1,w2, . . . ,w∣V ∣}n and we know that the possible POS tags
(= states) are Q = {NN ,NNS,VBD, IN , . . .}.

Task: estimate A and B of the corresponding HMMs.
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Training
We use the forward-backward or Baum-Welch algorithm (Baum,
1972), a special case of the EM algorithm (Dempster et al., 1977).

Underlying ideas:

We estimate parameters iteratively: we start with some param-
eters and use the estimated probabilities to derive be�er and
be�er parameters.
We get our estimates by computing forward probabilities and
then dividing the probability mass among all the di�erent state
sequences that have contributed to a forward probability.
Put di�erently, in each iteration loop, we count all possible
state sequences for the given observation sequence. But, in-
stead of counting each of them once, we use their probabilities
according to the most recent parameters as counts. We perform
some kind of frequency-based MLE with these weighted or
fractional counts.
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Training

We start with some initial A and B. In each iteration, new parameter
âij and b̂i(o) are computed.

Intuition:

âij =
expected number of transitions from state i to state j

expected number of transitions from state i
and

b̂i(o) =
expected number of times in i observing symbol o

expected number of times in state i
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Training

More precisely, instead of the expected numbers, we use the
probabilities according to the last parameters A and B and according
to the counts we retreive from the observation sequence o:

âij =
probability of transitions from i to j, given o
probability of transitions from state i, given o

and

b̂i(o) =
probability of emi�ing o in i, given o

probability of passing through state i, given o

22 / 33



Training

For âij , we �rst calculate the probability of being in state i at time t
(observation ot) and in state j at time t + 1, with the observation
sequence given. �is is a product of

the probability of being in i at step t a�er having emi�ed
o1 . . .ot , which is the forward probability αti;

the probability of the transition from i to j, which is aij ;

the probability of emi�ing ot+1 in j, which is bj(ot+1);

and the probability of moving from j to qF while emi�ing
ot+2 . . .on, which is given by the backward probability βt+1,j

divided by the probability of the observation since this is taken as
given, i.e., divided by P(o).
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Training

We de�ne ξt(i, j) as this probability, i.e., the probability of being in i
at time t, i.e., at observation ot and in j when emi�ing ot+1, given the
observation sequence o:

ξt(i, j) = P(qt = qi,qt+1 = qj ∣o)

According to the previous slide, this can be computed as

Transition E-step

ξt(i, j) =
αtiaijbj(ot+1)βt+1,j

P(o) for i, j ∈ {1, . . . , ∣Q∣}

�is is the E (expectation) step for the transition probabilities.
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Training
From these ξt(i, j) values, we can estimate new transition
probabilities towards maximizing the observed data:

Remember that we want to have

âij =
probability of transitions from i to j, given o
probability of transitions from state i, given o

With the previously de�ned ξt(i, j), we obtain

Transition M-step

âij = ∑n−1
t=1 ξt(i,j)

∑n−1
t=1 ∑

∣Q∣
k=1 ξt(i,k)+

αn,iaiF
P(o)

for i, j ∈ {1, . . . , ∣Q∣}.

â0i = a0ibi(o1)β1,i
∑∣Q∣k=1 a0kbk(o1)β1,k

and âiF =
αn,iaiF
P(o)

∑n−1
t=1 ∑

∣Q∣
k=1 ξt(i,k)+

αn,iaiF
P(o)

for 1 ≤ i ≤ ∣Q∣

�is is theM (maximization) step for the transition probabilities.
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Training

For b̂i(o), we calculate the probability of being in state i at time t
given the observation sequence o, which we call γt(i).

Emission E-step

γt(i) = P(qt = qi∣o) =
αtiβti
P(o)

�is is the E (expectation) step for the emission probabilities.
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Training

From these γt(i) values, we can estimate new emission probabilities
towards maximizing the observed data:

Remember that we want to have

b̂i(o) =
probability of emi�ing o in i, given o

probability of passing through state i, given o

Emission M-step

b̂i(o) =
∑1≤t≤n,ot=o γt(i)
∑n

t=1 γt(i)
for 1 ≤ i ≤ ∣Q∣

�is is theM (maximization) step for the emission probabilities.
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Training

Forward-backward algorithm (input observations o ∈ On, state set Q):

initialize A and B

iterate until convergence:

E-step
γt(i) = αtiβti

P(o) for all 1 ≤ t ≤ n, 1 ≤ i ≤ ∣Q∣
ξt(i, j) = αtiaijbj(ot+1)βt+1,j

P(o) for all 1 ≤ t ≤ n − 1, 1 ≤ i, j ≤ ∣Q∣
M-step
âij = ∑n−1

t=1 ξt(i,j)
∑n−1

t=1 ∑
∣Q∣
k=1 ξt(i,k)+

αn,iaiF
P(o)

for all 1 ≤ i, j ≤ ∣Q∣

â0i = a0ibi(o1)β1,i
∑∣Q∣k=1 a0kbk(o1)β1,k

and âiF =
αn,iaiF
P(o)

∑n−1
t=1 ∑

∣Q∣
k=1 ξt(i,k)+

αn,iaiF
P(o)

for 1 ≤ i ≤ ∣Q∣

b̂i(o) = ∑1≤t≤n,ot=o γt(i)
∑n

t=1 γt(i)

return A, B
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Training
(Simpli�ed) ice cream weather example
Initialized HMM:

start

H C

end
0.5

0.5 0.4

0.2
0.4 0.4

0.4

0.2

P(1∣H) = 0.2
P(3∣H) = 0.8

P(1∣C) = 0.8
P(3∣C) = 0.2

observed sequence 31:

α:
H 0.4 4 ⋅ 10−2
C 1 ⋅ 10−1 0.16
t 1 2

β:
H 8 ⋅ 10−2 0.2
C 8 ⋅ 10−2 0.2
t 1 2

P(31) = 4 ⋅ 10−2

E-step: γ:
t H C
1 0.8 0.2
2 0.2 0.8

ξ1:
j =H j =C

i =H 0.16 0.64
i =C 3.97 ⋅ 10−2 0.16

M-step:
start

H C

end
0.2

0.8 0.64

0.2
0.16 0.16

3.97 ⋅ 10−2
0.8

P(1∣H) = 0.2
P(3∣H) = 0.8

P(1∣C) = 0.8
P(3∣C) = 0.2 P(31) = 0.27
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Training

(Simpli�ed) ice cream weather example
Second step:

start

H C

end
0.2

0.8 0.64

0.2
0.16 0.16

3.97 ⋅ 10−2
0.8

P(1∣H) = 0.2
P(3∣H) = 0.8

P(1∣C) = 0.8
P(3∣C) = 0.2

α
H 0.64 2.08 ⋅ 10−2
C 4 ⋅ 10−2 0.33
t 1 2

β
H 0.42 0.2
C 0.1 0.8
t 1 2

E-step: γ:
t H C
1 0.98 1.53 ⋅ 10−2
2 1.53 ⋅ 10−2 0.98

ξ
j =H j =C

i =H 1.51 ⋅ 10−2 0.97
i =C 1.7 ⋅ 10−4 1.51 ⋅ 10−2

M-step:
start

H C

end
1.53 ⋅ 10−2

0.98 0.97

1.53 ⋅ 10−2

1.51 ⋅ 10−2 1.51 ⋅ 10−2

1.7 ⋅ 10−4
0.98

P(1∣H) = 1.53 ⋅ 10−2
P(3∣H) = 0.98

P(1∣C) = 0.98
P(3∣C) = 1.52 ⋅ 10−2 P(31) = 0.91
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Training

(Simpli�ed) ice cream weather example
�ird step:

start

H C

end
1.53 ⋅ 10−2

0.98 0.97

1.53 ⋅ 10−2

1.51 ⋅ 10−2 1.51 ⋅ 10−2

1.7 ⋅ 10−4
0.98

P(1∣H) = 1.53 ⋅ 10−2
P(3∣H) = 0.98

P(1∣C) = 0.98
P(3∣C) = 1.52 ⋅ 10−2

α
H 0.97 2.1 ⋅ 10−4
C 2.3 ⋅ 10−4 0.93
t 1 2

β
H 0.94 1.53 ⋅ 10−2
C 1.46 ⋅ 10−2 0.98
t 1 2

E-step: γ:
t H C
1 1 0
2 0 1

ξ
j =H j =C

i =H 0 1
i =C 0 0

M-step:
start

H C

end0

1 1

0
0 0

0

1

P(1∣H) = 6 ⋅ 10−5
P(3∣H) = 1

P(1∣C) = 1
P(3∣C) = 0 P(31) = 1
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Training

Note that we can also leave out the factor 1
P(o) , the result is the same:

initialize A and B

iterate until convergence:

E-step
φt(i) = αtiβti for all 1 ≤ t ≤ n, 1 ≤ i ≤ ∣Q∣
ψt(i, j) = αtiaijbj(ot+1)βt+1,j for all 1 ≤ t ≤ n − 1, 1 ≤ i, j ≤ ∣Q∣

M-step
âij = ∑n−1

t=1 ξt(i,j)
∑n−1

t=1 ∑
∣Q∣
k=1 ψt(i,k)+αn,iaiF

for all 1 ≤ i, j ≤ ∣Q∣

â0i = a0ibi(o1)β1,i
∑∣Q∣k=1 a0kbk(o1)β1,k

and âiF = αn,iaiF
∑n−1

t=1 ∑
∣Q∣
k=1 ξt(i,k)+αn,iaiF

for 1 ≤ i ≤ ∣Q∣

b̂i(o) = ∑1≤t≤n,ot=o φt(i)
∑n

t=1 φt(i)

return A, B
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