
Mildly Context-Sensitive Grammar

Formalisms:

Thread Automata

Laura Kallmeyer

Sommersemester 2011

Grammar Formalisms 1 Thread Automata

Kallmeyer Sommersemester 2011

Overview

1. Idea of Thread Automata

2. TA for Simple RCG

3. Example

4. General Definition of TA

5. TA for TAG

Grammar Formalisms 2 Thread Automata

Idea of Thread Automata (1)

• Thread automata (TA) have been proposed in

[Villemonte de La Clergerie, 2002]. See also [Kallmeyer, 2010]

for a description of TA.

• TA accept (at least) the class of all LCFRLs, maybe even a

proper superset.

• TA are non-deterministic and, if all possibilities are pursued

independently from each other, they are of exponential

complexity.

• However, in combination with a compact representation of

sub-derivations as items and with tabulation techniques, they

become polynomial.

Grammar Formalisms 3 Thread Automata

Kallmeyer Sommersemester 2011

Idea of Thread Automata (2)

Overall idea of TA:

• We have a set of threads, one of which is the active thread.

• Each thread has a unique path that situates it within the

tree-shaped thread structure.

• Whenever a new thread is started, its path is a concatenation

of the parent thread path and a new symbol. This way, from a

given active thread, we can always find its parent thread (the

one that started it) and its daughter threads.

• The moves of the automaton are the following: We can change

the content of the active thread, start a new daughter thread or

move into an existing daughter thread, or move into the parent

thread while, eventually, terminating the active thread.

Grammar Formalisms 4 Thread Automata

Idea of Thread Automata (3)

Example: Consider the following simple RCG for

{anbnecndn |n ≥ 0}:

S(XeY) → A(X, Y) S(e) → ε

A(aXb, cY d) → A(X, Y) A(ab, cd) → ε

In the corresponding TA,

• we would start with an S thread.

• From here, we can read an e and then terminate.

• Or we start a daughter A thread that is suspended once the

first component is finished.

• Then we continue the mother S thread, read the e and then

resume the daughter.

Grammar Formalisms 5 Thread Automata

Kallmeyer Sommersemester 2011

Idea of Thread Automata (4) w = aabbeccdd

[1 : S(•XeY) → A(X, Y)]

[1 : . . .], [11 : A(•aXb, cY d) → A(X, Y)] predict

[1 : . . .], [11 : A(a • Xb, cY d) → A(X, Y)] scan

[1 : . . .], [11 : . . .], [111 : A(•ab, cd) → ε] predict

[1 : . . .], [11 : . . .], [111 : A(ab•, cd) → ε] scan (twice)

[1 : . . .], [11 : A(aX • b, cY d) → A(X, Y)], [111 : . . .] suspend

[1 : . . .], [11 : A(aXb•, cY d) → A(X, Y)], [111 : . . .] scan

[1 : S(Xe • Y) → A(X, Y)], [11 : . . .], [111 : . . .] suspend, scan

[1 : . . .], [11 : A(aXb, •cY d) → A(X, Y)], [111 : . . .] resume

[1 : . . .], [11 : A(aXb, c • Y d) → A(X, Y)], [111 : . . .] scan

[1 : . . .], [11 : . . .] , [111 : A(ab, cd•) → ε] resume, scan (twice)

[1 : . . .], [11 : A(aXb, cY d•) → A(X, Y)] suspend, scan

[1 : S(XeY •) → A(X, Y)] suspend

Grammar Formalisms 6 Thread Automata

Idea of Thread Automata (5)

• TA for simple RCGs perform a top-down recognition.

• If an additional tabulation is included, the automaton amounts

to an incremental Earley recognition.

• [Villemonte de La Clergerie, 2002] has implemented TA in

general.

• [Kallmeyer and Maier, 2009] implements an incremental Earley

chart parsing of ordered simple RCG following the same

strategy.

Grammar Formalisms 7 Thread Automata

Kallmeyer Sommersemester 2011

TA for Simple RCG (1)

[Villemonte de La Clergerie, 2002] gives a general definition of TA

and shows then how to construct equivalent TA for Tree Adjoining

Grammars and for simple RCGs.

In the following, we first introduce the specific TA for ordered

simple RCGs that we call SRCG-TA. Only later, general TA are

defined.

We call a simple RCG rule with a dot in the lhs a dotted rule.

Grammar Formalisms 8 Thread Automata

TA for Simple RCG (2)

Definition 1 (Thread Automaton for Simple RCG) A

thread automaton for an ordered simple RCG

G = 〈NG, TG, SG, PG〉 (SRCG-TA) is a tuple 〈N, T, S′, ret ,U , Θ〉

where

• N = NG ∪ {S′, ret} ∪ {γ | γ is a dotted rule in G}, T = TG are

the non-terminals and terminals with S′, ret ∈ N \ NG the start

and end symbols;

• U = {1, . . . , m} where m the maximal rhs length in G is the set

of labels used to identify threads.

• Θ is a finite set of transitions.

Grammar Formalisms 9 Thread Automata

Kallmeyer Sommersemester 2011

TA for Simple RCG (3)

A configuration is a tree-shaped set of threads, one of them being

the active thread, together with a position in the input that

separates the part that has been recognized from the remaining

part of the input.

Definition 2 (Thread, Configuration) Let

M = 〈N, T, S′, ret,U , Θ〉 be a SRCG-TA.

• A thread is a pair p : A with p ∈ U∗, A ∈ N . p is the thread

path, and A is the content of the thread.

• A thread store is a set of threads whose addresses are closed by

prefix.

• A configuration of M is a tuple 〈i, p,S〉 where i is an input

position, S is a thread set and p is a thread path in S.

Grammar Formalisms 10 Thread Automata

TA for Simple RCG (4)

The transitions defined within Θ are the following:

• Call starts a new thread, either for the start predicate or for a

daughter predicate:

If active thread [p : S′], then add new thread [p1 : S] (where S

start symbol of G), set active thread to p1.

If active thread [p : γ], γ a dotted rule with the dot preceding

the first variable of the rhs non-terminal A and A is the ith rhs

element, then add new thread [pi : A] and set active thread to

pi.

• Predict predicts a new clause for a non-terminal:

If active thread [p : A] with A ∈ NG and if γ is a dotted A-rule

with the dot at the leftmost position, then replace active

thread with [p : γ].

Grammar Formalisms 11 Thread Automata

Kallmeyer Sommersemester 2011

TA for Simple RCG (5)

• Scan moves the dot over a terminal in the left-hand side while

scanning the next input symbol:

If input position i and active thread [p : γ] where γ a dotted

rule such that the dot precedes a terminal that is the (i + 1)st

input symbol, then move dot over this terminal in active thread

and increment input position.

• Publish marks the end of a predicate:

If active thread [p : γ] where γ a dotted rule such that the dot

is at the end of the lhs, then replace active thread with [p : ret].

Grammar Formalisms 12 Thread Automata

TA for Simple RCG (6)

• Suspend suspends a daughter thread and resumes the parent:

1. If [pi : ret] is the active thread and in its parent thread

[p : γ] the dot precedes the last variable of the ith rhs

element, then remove active thread, move dot over this

variable in p thread and set active thread to p.

2. If [pi : γ] is the active thread with the dot at the end of the

jth lhs component, the jth component is not the last, and if

the parent thread is [p : β] with the dot preceding the

variable that is the jth argument of the ith rhs element,

then move the dot over this variable in the p thread and set

active thread to p.

Grammar Formalisms 13 Thread Automata

Kallmeyer Sommersemester 2011

TA for Simple RCG (7)

• Resume resumes an already present daughter thread:

If active thread is [p : γ] where the dot precedes a variable that

is the jth (j > 1) argument of the ith rhs element and if pi : β]

is the daughter thread where the dot is at the end of the

(j − 1)th lhs argument, then move the dot to the beginning of

the jth lhs argument in the pi thread and set active thread to

pi.

Grammar Formalisms 14 Thread Automata

TA for Simple RCG (8)

The set of possible configurations C(M, w) for a given input

SRCG-TA M and a given input w contains all configurations that

are reachable from 〈0, ε, {[ε : S′]}〉 via the reflexive transitive

closure of the transitions.

The language of a SRCG-TA is the set of words that allow us,

starting from the initial thread set {ε : S′}, to reach the set

{ε : S′, 1 : ret} after having scanned the entire input.

Definition 3 (Language) Let M = 〈N, T, S′, ret,U , Θ〉 be a

SRCG-TA. The language of M is defined as follows:

L(M) = {w | 〈|w|, 1, {ε : S′, 1 : ret}〉 ∈ C(M, w)}.

Grammar Formalisms 15 Thread Automata

Kallmeyer Sommersemester 2011

Example (1)

Ordered simple RCG with the following rules:

α : S(XY Z) → A(X, Y, Z)

β : A(aX, aY, aZ) → A(X, Y, Z)

γ : A(b, b, b) → ε

We encode dotted rules as ri,j where r the name of the rule, 〈i, j〉

the position of the dot: the dot precedes the j element of the ith

argument of the lhs.

Ex.: β2,0 encodes A(aX, •aY, aZ) → A(X, Y, Z)

Input w = ababab.

Grammar Formalisms 16 Thread Automata

Example (2)

thread set rem. input

ε : S′ ababab

ε : S′, 1 : S ababab call

ε : S′, 1 : α1,0 ababab predict

ε : S′, 1 : α1,0, 11 : A ababab call

ε : S′, 1 : α1,0, 11 : β1,0 ababab predict

ε : S′, 1 : α1,0, 11 : β1,1 babab scan

ε : S′, 1 : α1,0, 11 : β1,1, 111 : A babab call

ε : S′, 1 : α1,0, 11 : β1,1, 111 : γ1,0 babab predict

ε : S′, 1 : α1,0, 11 : β1,1, 111 : γ1,1 abab scan

ε : S′, 1 : α1,0, 11 : β1,2, 111 : γ1,1 abab suspend

ε : S′, 1 : α1,1, 11 : β1,2, 111 : γ1,1 abab suspend

Grammar Formalisms 17 Thread Automata

Kallmeyer Sommersemester 2011

Example (3)

ε : S′, 1 : α1,1, 11 : β2,0, 111 : γ1,1 abab resume

ε : S′, 1 : α1,1, 11 : β2,1, 111 : γ1,1 bab scan

ε : S′, 1 : α1,1, 11 : β2,1, 111 : γ2,0 bab resume

ε : S′, 1 : α1,1, 11 : β2,1, 111 : γ2,1 ab scan

ε : S′, 1 : α1,1, 11 : β2,2, 111 : γ2,1 ab suspend

ε : S′, 1 : α1,2, 11 : β2,2, 111 : γ2,1 ab suspend

ε : S′, 1 : α1,2, 11 : β3,0, 111 : γ2,1 ab resume

ε : S′, 1 : α1,2, 11 : β3,1, 111 : γ2,1 b scan

ε : S′, 1 : α1,2, 11 : β3,1, 111 : γ3,0 b resume

ε : S′, 1 : α1,2, 11 : β3,1, 111 : γ3,1 ε scan

ε : S′, 1 : α1,2, 11 : β3,1, 111 : ret ε publish

ε : S′, 1 : α1,2, 11 : β3,2 ε suspend

Grammar Formalisms 18 Thread Automata

Example (4)

ε : S′, 1 : α1,2, 11 : ret ε publish

ε : S′, 1 : α1,3 ε suspend

ε : S′, 1 : ret ε publish

Input accepted with the last configuration.

Grammar Formalisms 19 Thread Automata

Kallmeyer Sommersemester 2011

General Definition of TA (1)

We will now give the general definition of TA.

Definition 4 (Thread Automaton) A Thread Automaton is a

tuple 〈N, T, S, F, κ,K, δ,U , Θ〉 where

• N and T are non-terminal and terminal alphabets with

S, F ∈ N the start and end symbols;

• κ, the triggering function, is a partial function from N to some

finite set K

• U is a finite set of labels used to identify threads.

• δ is a partial function from N to U ∪ {⊥} used to specify

daughter threads that can be created or resumed at some point.

• Θ is a finite set of transitions.

Grammar Formalisms 20 Thread Automata

General Definition of TA (2)

In the simple RCG case, κ and δ are used to indicate, for the dot

preceding a given variable in the lhs, which of the rhs elements

contains this variable as an argument. This determines the

daughter thread that processes this variable. Furthermore, when

starting a new daughter thread, κ indicates the corresponding

non-terminal. Therefore, K = N ∪ {void} and

• κ(γk,i) = A and δ(γk,i) = j if A is the jth predicate in the rhs

of γ and the dot precedes the first argument of A,

• κ(γk,i) = void and δ(γk,i) = j if the dot precedes an argument

of A that is not its first argument,

• κ(γk,i) = void and δ(γk,i) = ⊥ if the dot is at the end of the

kth argument and, instead of moving into a daughter thread,

we have to suspend this thread and resume the parent.

Grammar Formalisms 21 Thread Automata

Kallmeyer Sommersemester 2011

General Definition of TA (3)

Definition 5 (TA Transitions) Let

M = 〈N, T, S, F, κ,K, δ,U , Θ〉 be a TA. All transitions in Θ have

one of the following forms:

• B
α
→ C with B, C ∈ N, α ∈ T ∗ (SWAP operation)

• b → [b]C with b ∈ K, C ∈ N (PUSH operation)

• [B]C → D with B, C, D ∈ N (POP operation)

• b[C] → [b]D with b ∈ K, C, D ∈ N (SPUSH operation)

• [B]c → D[c] with c ∈ K, B, D ∈ N (SPOP operation)

Grammar Formalisms 22 Thread Automata

General Definition of TA (4)

The set of configurations for w, C(M, w), is then defined by the

following deduction rules:

• Initial configuration:
〈0, ε, {ε : S}〉

• Swap:
〈i, p,S ∪ p : B〉

〈i + |α|, p,S ∪ p : C〉
B

α
→ C, wi+1 . . . wi+|α| = α

• Push:

〈i, p,S ∪ p : B〉

〈i, pu,S ∪ p : B ∪ pu : C〉

b → [b]C, κ(B) = b, δ(B) = u,

pu /∈ dom(S)

Grammar Formalisms 23 Thread Automata

Kallmeyer Sommersemester 2011

General Definition of TA (5)

• Pop:

〈i, pu,S ∪ p : B ∪ pu : C〉

〈i, p,S ∪ p : D〉
[B]C → D, δ(C) = ⊥, pu /∈ dom(S)

• Spush:

〈i, p,S ∪ p : B ∪ pu : C〉

〈i, pu,S ∪ p : B ∪ pu : D〉
b[C] → [b]D, κ(B) = b, δ(B) = u

• Spop:

〈i, pu,S ∪ p : B ∪ pu : C〉

〈i, p,S ∪ p : D ∪ pu : C〉
[B]c → D[c], κ(C) = c, δ(C) = ⊥

Grammar Formalisms 24 Thread Automata

General Definition of TA (6)

The language of a TA is the set of words that allow us, starting

from the initial thread set {ε : S}, to reach the set {ε : S, δ(S) : F}

after having scanned the entire input.

Definition 6 (Language) Let M = 〈N, T, S, F, κ,K, δ,U , Θ〉 be a

TA,

The language of M is defined as follows:

L(M) = {w | 〈n, δ(S), {ε : S, δ(S) : F}〉 ∈ C(M, w)}.

Grammar Formalisms 25 Thread Automata

Kallmeyer Sommersemester 2011

General Definition of TA (7)

Take again the TA equivalent to the simple RCG with the following

clauses:

α : S(XY Z) → A(X, Y, Z)

β : A(aX, aY, aZ) → A(X, Y, Z)

γ : A(b, b, b) → ε

Transitions of the corresponding TA (start symbol S′):

Call: S′ → [S′]S α1,0 → [α1,0]A β1,1 → [β1,1]A

Predict: S → α1,0 A → β1,0 A → γ1,0

Scan: β1,0
a
→ β1,1 β2,0

a
→ β2,1 β3,0

a
→ β3,1

γ1,0
b
→ γ1,1 γ2,0

b
→ γ2,1 γ3,0

b
→ γ3,1

Grammar Formalisms 26 Thread Automata

General Definition of TA (8)

Suspend:

[α1,0]β1,2 → α1,1[β1,2] [α1,1]β2,2 → α1,2[β2,2] [α1,2]ret → α1,3

[α1,0]γ1,1 → α1,1[γ1,1] [α1,1]γ2,1 → α1,2[γ2,1]

[β1,1]β1,2 → β1,2[β1,2] [β2,1]β2,2 → β2,2[β2,2] [β3,1]ret → β3,2

[β1,1]γ1,1 → β1,2[γ1,1] [β2,1]γ2,1 → β2,2[γ2,1]

Resume

α1,1[β1,2] → [α1,1]β2,0 β2,1[β1,2] → [β2,1]β2,0

α1,1[γ1,0] → [α1,1]γ2,0 β2,1[γ1,0] → [β2,1]γ2,0

α1,2[β2,2] → [α1,2]β3,0 β2,1[β2,2] → [β2,1]β3,0

α1,2[γ2,0] → [α1,2]γ3,0 β3,1[γ2,0] → [β3,1]γ3,0

Publish:

α1,3 → ret β3,2 → ret γ3,1 → ret

Grammar Formalisms 27 Thread Automata

Kallmeyer Sommersemester 2011

TA for TAG (1)

• We use the position left/right above/below (depicted with a

dot) that we know from the TAG Earley parsing.

• Whenever, in the active thread, we are left above a possible

adjunction site, we can predict an adjunction by starting a

sub-thread (PUSH).

• When reaching the position left above a foot node, we can

suspend the thread and resume the parent (SPOP).

• Whenever we arrive right below an adjunction site, we can

resume the daughter of the adjoined tree whose content is the

foot node (SPUSH).

• Whenever we arrive right above the root of an auxiliary tree,

we do a POP, i.e., finish this thread and resume the parent.

Grammar Formalisms 28 Thread Automata

TA for TAG (2)

• We use a special symbol ret to mark the fact that we have

completely traversed the elementary tree and we can therefore

finish this thread.

• Besides moving this way from one elementary tree to another,

we can move down, move left and move up inside a single

elementary tree (while eventually scanning a terminal) using

the SWAP operation.

Grammar Formalisms 29 Thread Automata

Kallmeyer Sommersemester 2011

TA for TAG (3)

Example:

Elementary trees:

Rα

c

Rβ

a F b

(Rα and Rβ allow for adjunction of β.)

Grammar Formalisms 30 Thread Automata

TA for TAG (4)

Sample thread set of corresponding TA for input aacbb:

thread set operation

[1 : •Rα]

[1 : •Rα], [11 : •Rβ] PUSH

[1 : •Rα], [11 : •Rβ], [111 : •Rβ] PUSH

[1 : •Rα], [11 : •Rβ], [111 : •Rβ] SWAP

[1 : •Rα], [11 : •Rβ], [111 : •a] SWAP

[1 : •Rα], [11 : •Rβ], [111 : a•] SWAP (scan a)

[1 : •Rα], [11 : •Rβ], [111 : •F] SWAP

[1 : •Rα], [11 : •Rβ], [111 : •F] SPOP

[1 : •Rα], [11 : •a], [111 : •F] SWAP

[1 : •Rα], [11 : a•], [111 : •F] SWAP (scan a)

[1 : •Rα], [11 : •F], [111 : •F] SWAP

Grammar Formalisms 31 Thread Automata

Kallmeyer Sommersemester 2011

TA for TAG (5)

[1 : •Rα], [11 : •F], [111 : •F] SPOP

[1 : •c], [11 : •F], [111 : •F] SWAP

[1 : c•], [11 : •F], [111 : •F] SWAP (scan c)

[1 : Rα•
], [11 : •F], [111 : •F] SWAP

[1 : Rα•
], [11 : F •], [111 : •F] SPUSH

[1 : Rα•
], [11 : •b], [111 : •F] SWAP

[1 : Rα•
], [11 : b•], [111 : •F] SWAP (scan b)

[1 : Rα•
], [11 : Rβ

•
], [111 : •F] SWAP

[1 : Rα•
], [11 : Rβ

•
], [111 : F •] SPUSH

[1 : Rα•
], [11 : Rβ

•
], [111 : •b] SWAP

[1 : Rα•
], [11 : Rβ

•
], [111 : b•] SWAP (scan b)

Grammar Formalisms 32 Thread Automata

TA for TAG (6)

[1 : Rα•
], [11 : Rβ

•
], [111 : Rβ

•
] SWAP

[1 : Rα•
], [11 : Rβ

•
], [111 : Rβ

•] SWAP

[1 : Rα•
], [11 : Rβ

•
], [111 : ret] SWAP

[1 : Rα•
], [11 : Rβ

•] POP

[1 : Rα•
], [11 : ret] SWAP

[1 : Rα
•] POP

[1 : ret] SWAP

Grammar Formalisms 33 Thread Automata

Kallmeyer Sommersemester 2011

TA for TAG (7)

TA for our sample TAG:

M = 〈N, T, S, ret, κ,K, δ,U , Θ〉 is as follows:

• N contains all symbols •X, •X, X•, X
• where X is a node in

one of the elementary trees, i.e., X ∈ {Rα, c, Rβ, a, F, b}.

Furthermore, N contains a special symbol ret and a special

symbol S.

• T = {a, b, c}.

• S is the initial thread symbol and ret is the final thread symbol.

• K = N, κ(A) = A for all A ∈ N .

• U = {1}, δ(X) = 1 for all

A ∈ N \ {•F , ret}, δ(ret) = ⊥, δ(•F) = ⊥.

Grammar Formalisms 34 Thread Automata

TA for TAG (8)

• Transitions Θ:

S → [S]•Rα start initial tree

•Rα → •Rα, •Rβ → •Rβ predict no adjunction

•Rα →
•c, •Rβ →

•a move down

•c
c
→ c•, •a

a
→ a•, •b

b
→ b• scan

a•

→
•F , F •

→
•b move right

c• → Rα•
, b• → Rβ

•
move up

Rα•
→ Rα

•, Rβ
•
→ Rβ

• move up if no adjunction

•Rα → [•Rα]•Rβ , •Rβ → [•Rβ]•Rβ predict adjoined tree

[•Rα]•F → •Rα[•F], [•Rβ]•F → •Rβ[•F] back to adjunction site

Rα•
[•F] → [Rα•

]F •, Rβ
•
[•F] → [Rβ

•
]F • resume adjoined tree

Rα
•

→ ret, Rβ
•

→ ret complete elementary tree

[Rα•
]ret → Rα

•, [Rβ
•
]ret → Rβ

• terminate adjunction, go back

Grammar Formalisms 35 Thread Automata

Kallmeyer Sommersemester 2011

References

[Kallmeyer, 2010] Kallmeyer, L. (2010). Parsing Beyond

Context-Free Grammars. Cognitive Technologies. Springer,

Heidelberg.

[Kallmeyer and Maier, 2009] Kallmeyer, L. and Maier, W. (2009).

An incremental Earley parser for simple Range Concatenation

Grammar. In Proceedings of IWPT 2009.

[Villemonte de La Clergerie, 2002] Villemonte de La Clergerie, E.

(2002). Parsing mildly context-sensitive languages with thread

automata. In Proc. of COLING’02.

Grammar Formalisms 36 Thread Automata

