
Mildly Context-Sensitive Grammar

Formalisms:

Tree Adjoining Grammar Parsing

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Sommersemester 2011

Grammar Formalisms 1 TAG Parsing

Kallmeyer Sommersemester 2011

Overview

1. A CYK recognizer for TAG

(a) Items

(b) Inference rules

(c) Complexity

2. Earley Parsing for TAG

(a) Introduction

(b) Items

(c) Inference rules

Grammar Formalisms 2 TAG Parsing

CYK: Items (1)

CYK-Parsing for TAG:

• First presented in [Vijay-Shanker and Joshi, 1985], formulation

with deduction rules in [Kallmeyer and Satta, 2009].

• Assumption: elementary trees are such that each node has at

most two daughters. (Any TAG can be transformed into an

equivalent TAG satisfying this condition.)

• The algorithm simulates a bottom-up traversal of the derived

tree.

Grammar Formalisms 3 TAG Parsing

Kallmeyer Sommersemester 2011

CYK: Items (2)

• At each moment, we are in a specific node in an elementary

tree and we know about the yield of the part below. Either

there is a foot node below, then the yield is separated into two

parts. Or there is no foot node below and the yield is a single

substring of the input.

• We need to keep track of whether we have already adjoined at

the node or not since at most one adjunction per node can

occur. For this, we distinguish between a bottom and a top

position for the dot on a node. Bottom signifies that we have

not performed an adjunction.

Grammar Formalisms 4 TAG Parsing

CYK: Items (3)

Item form: [γ, pt, i, f1, f2, j] where

• γ ∈ I ∪ A,

• p is the Gorn address of a node in γ (ǫ for the root, pi for the

ith daughter of the node at address p),

• subscript t ∈ {⊤,⊥} specifies whether substitution or

adjunction has already taken place (⊤) or not (⊥) at p, and

• 0 ≤ i ≤ f1 ≤ f2 ≤ j ≤ n are indices with i, j indicating the left

and right boundaries of the yield of the subtree at position p

and f1, f2 indicating the yield of a gap in case a foot node is

dominated by p. We write f1 = f2 = – if no gap is involved.

Grammar Formalisms 5 TAG Parsing

Kallmeyer Sommersemester 2011

CYK: Inference rules (1)

Goal items: [α, ǫ⊤, 0, –, –, n] where α ∈ I

We need two rules to process leaf nodes while scanning their labels,

depending on whether they have terminal labels or labels ǫ:

Lex-scan:
[γ, p⊤, i, –, –, i + 1]

l(γ, p) = wi+1

Eps-scan:
[γ, p⊤, i, –, –, i]

l(γ, p) = ǫ

(Notation: l(γ, p) is the label of the node at address p in γ.)

Grammar Formalisms 6 TAG Parsing

CYK: Inference rules (2)

•

wi+1

i i + 1

Lex-scan

•

ǫ
i i

Eps-scan

Grammar Formalisms 7 TAG Parsing

Kallmeyer Sommersemester 2011

CYK: Inference rules (3)

The rule foot-predict processes the foot node of auxiliary trees

β ∈ A by guessing the yield below the foot node:

Foot-predict:
[β, p⊤, i, i, j, j]

β ∈ A, p foot node address in β, i ≤ j

A

•

A∗

i j

Grammar Formalisms 8 TAG Parsing

CYK: Inference rules (4)

When moving up inside a single elementary tree, we either move

from only one daughter to its mother, if this is the only daughter,

or we move from the set of both daughters to the mother node:

Move-unary:

[γ, (p · 1)⊤, i, f1, f2, j]

[γ, p⊥, i, f1, f2, j]
node address p · 2 does not exist in γ

Move-binary:
[γ, (p · 1)⊤, i, f1, f2, k], [γ, (p · 2)⊤, k, f ′

1, f
′

2, j]

[γ, p⊥, i, f1 ⊕ f ′

1, f2 ⊕ f ′

2, j]

(f ′ ⊕ f ′′ = f where f = f ′ if f ′′ = –, f = f ′′ if f ′ = –, and f is undefined

otherwise)

Grammar Formalisms 9 TAG Parsing

Kallmeyer Sommersemester 2011

CYK: Inference rules (5)

Move-unary:

γ A

•

B

i j

;

γ
A
•

B

i j

Grammar Formalisms 10 TAG Parsing

CYK: Inference rules (6)

Move-binary:

γ A

•

B C

i k

γ A

B
•

C

k j

;

γ
A
•

B C

i j

Grammar Formalisms 11 TAG Parsing

Kallmeyer Sommersemester 2011

CYK: Inference rules (7)

For nodes that do not require adjunction, we can move from the

bottom position of the node to its top position.

Null-adjoin:
[γ, p⊥, i, f1, f2, j]

[γ, p⊤, i, f1, f2, j]
fOA(γ, p) = 0

γ
A
•

i j

;
γ

•

A

i j

Grammar Formalisms 12 TAG Parsing

CYK: Inference rules (8)

The rule substitute performes a substitution:

Substitute:
[α, ǫ⊤, i, –, –, j]

[γ, p⊤, i, –, –, j]
l(α, ǫ) = l(γ, p)

•

A

α

i j

;
γ

•

A
i j

Grammar Formalisms 13 TAG Parsing

Kallmeyer Sommersemester 2011

CYK: Inference rules (9)

The rule adjoin adjoins an auxiliary tree β at p in γ, under the

precondition that the adjunction of β at p in γ is allowed:

Adjoin:
[β, ǫ⊤, i, f1, f2, j], [γ, p⊥, f1, f

′

1, f
′

2, f2]

[γ, p⊤, i, f ′

1, f
′

2, j]
β ∈ fSA(γ, p)

Grammar Formalisms 14 TAG Parsing

CYK: Inference rules (10)

Adjoin:

•

A

β

A∗

i f1 f2 j

γ
A
•

f1 f2

;
γ

•

A

i j

Grammar Formalisms 15 TAG Parsing

Kallmeyer Sommersemester 2011

CYK: Complexity

Complexity of the algorithm: What is the upper bound for the

number of applications of the adjoin operation?

• We have |A| possibilities for β, |A∪ I| for γ, m for p where m is

the maximal number of internal nodes in an elementary tree.

• The six indices i, f1, f
′

1, f
′

2, f2, j range from 0 to n.

Consequently, adjoin can be applied at most |A||A ∪ I|m(n + 1)6

times and therefore, the time complexity of this algorithm is O(n6).

Grammar Formalisms 16 TAG Parsing

Earley: Introduction (1)

• Left-to-right CYK parser very slow: O(n6) worst case and best

case (just as in CFG version of CYK, to many partial trees not

pertinent to the final tree are produced).

• Behaviour is due to pure bottom-up approach, no predictive

information whatsoever is used.

• Goal: Earley-style parser! First in [Schabes and Joshi, 1988].

Here, we present the algorithm from [Joshi and Schabes, 1997].

We assume a TAG without substitution nodes.

Grammar Formalisms 17 TAG Parsing

Kallmeyer Sommersemester 2011

Earley: Introduction (2)

• Earley Parsing: Left-to-right scanning of the string (using

predictions to restrict hypothesis space)

• Traversal of elementary trees, current position marked with a

dot.

The dot can have exactly four positions with respect to the

node: left above (la), left below (lb), right above (ra), right

below (rb).

Grammar Formalisms 18 TAG Parsing

Earley: Introduction (3)

General idea: Whenever we are

• left above a node, we can predict an adjunction and start the

traversal of the adjoined tree;

• left of a foot node, we can move back to the adjunction site and

traverse the tree below it;

• right of an adjunction site, we continue the traversal of the

adjoined tree at the right of its foot node;

• right above the root of an auxiliary tree, we can move back to

the right of the adjunction site.

Grammar Formalisms 19 TAG Parsing

Kallmeyer Sommersemester 2011

Earley: Items (1)

What kind of information do we need in an item characterizing a

partial parsing result?

[α, dot, pos, i, j, k, l, sat?]

where

• α ∈ I ∪ A is a (dotted) tree, dot and pos the address and

location of the dot

• i, j, k, l are indices on the input string, where i, l ∈ {0, . . . , n},

j, k ∈ {0, . . . , n} ∪ {−}, n = |w|, − means unbound value

• sat? is a flag. It controls (prevents) multiple adjunctions at a

single node (sat? = 1 means that something has already been

adjoined to the dotted node)

Grammar Formalisms 20 TAG Parsing

Earley: Items (2)

What do the items mean?

• [α, dot, la, i, j, k, l, 0]: In α part left of the dot ranges from i to

l. If α is an auxiliary tree, part below foot node ranges from j

to k.

• [α, dot, lb, i,−,−, i, 0]: In α part below dotted node starts at

position i.

• [α, dot, rb, i, j, k, l, sat?]: In α part below dotted node ranges

from i to l. If α is an auxiliary tree, part below foot node

ranges from j to k. If sat? = 0, nothing was adjoined to dotted

node, sat? = 1 means that adjunction took place.

• [α, dot, ra, i, j, k, l, 0]: In α part left and below dotted node

ranges from i to l. If α is an auxiliary tree, part below foot

node ranges from j to k.

Grammar Formalisms 21 TAG Parsing

Kallmeyer Sommersemester 2011

Earley: Items (3)

Some notational conventions:

• We use Gorn addresses for the nodes: 0 is the address of the

root, i (1 ≤ i) is the address of the ith daughter of the root,

and for p 6= 0, p · i is the address of the ith daughter of the

node at address p.

• For a tree α and a Gorn address dot, α(dot) denotes the node

at address dot in α (if defined).

Grammar Formalisms 22 TAG Parsing

Earley: Inference Rules (1)

ScanTerm
[γ, dot, la, i, j, k, l, 0]

[γ, dot, ra, i, j, k, l + 1, 0]
l(γ, dot) = wl+1

• wl+1wi+1 . . . wl

Scan-ε
[γ, dot, la, i, j, k, l, 0]

[γ, dot, ra, i, j, k, l, 0]
l(γ, dot) = ε

Grammar Formalisms 23 TAG Parsing

Kallmeyer Sommersemester 2011

Earley: Inference Rules (2)

PredictAdjoinable
[γ, dot, la, i, j, k, l, 0]

[β, 0, la, l,−,−, l, 0]
β ∈ fSA(γ, dot)

•
A

wi+1 . . . wl

•
A

⇒

A∗

PredictNoAdj
[γ, dot, la, i, j, k, l, 0]

[γ, dot, lb, l,−,−, l, 0]
fOA(γ, dot) = 0

Grammar Formalisms 24 TAG Parsing

Earley: Inference Rules (3)

PredictAdjoined

[β, dot, lb, l,−,−, l, 0]

[γ, dot′, lb, l,−,−, l, 0]
dot = foot(β), β ∈ fSA(γ, dot′)

•A

A

⇒

A∗

•

Grammar Formalisms 25 TAG Parsing

Kallmeyer Sommersemester 2011

Earley: Inference Rules (4)

CompleteFoot

[γ, dot, rb, i, j, k, l, 0], [β, dot′, lb, i,−,−, i, 0]

[β, dot′, rb, i, i, l, l, 0]

dot′=foot(β),

β∈fSA(γ,dot′)

•A ⇒

wi+1 . . . wl

A

A∗

•

A

A∗

•

Grammar Formalisms 26 TAG Parsing

Earley: Inference Rules (5)

CompleteNode

[γ, dot, la, f, g, h, i, 0], [γ, dot, rb, i, j, k, l, sat?]

[γ, dot, ra, f, g⊕ j, h ⊕ k, l, 0]
l(β, dot) ∈ N

•A ⇒

wi+1 . . . wl

•
A

wf+1 . . . wi

•
A

wf+1 . . . wl

Grammar Formalisms 27 TAG Parsing

Kallmeyer Sommersemester 2011

Earley: Inference Rules (6)

Adjoin

[β, ε, ra, i, j, k, l, 0], [γ, dot, rb, j, p, q, k, 0]

[γ, dot, rb, i, p, q, l, 1]
β ∈ fSA(γ, p)

•
A

A∗

wi+1 . . . wj wk+1 . . . wl

•A ⇒

wj+1 . . . wk

•Aadj

wi+1 . . . wl

sat? = 1 prevents the new item from being reused in another Adjoin

application.

Grammar Formalisms 28 TAG Parsing

Earley: Inference Rules (7)

Move the dot to daughter/sister/mother:

MoveDown:
[γ, dot, lb, i, j, k, l, 0]

[γ, dot · 1, la, i, j, k, l, 0]
γ(dot · 1) is defined

MoveRight:
[γ, dot, ra, i, j, k, l, 0]

[γ, dot + 1, la, i, j, k, l, 0]
γ(dot + 1) is defined

MoveUp:
[γ, dot · m, ra, i, j, k, l, 0]

[γ, dot, rb, i, j, k, l, 0]
γ(dot · m + 1) is not defined

Grammar Formalisms 29 TAG Parsing

Kallmeyer Sommersemester 2011

Earley: Inference Rules (8)

Initialize:
[α, ε, la, 0,−,−, 0, 0]

α ∈ I, l(α, ε) = S

Goal item: [α, 0, ra, 0,−,−, n, 0], α ∈ I

Grammar Formalisms 30 TAG Parsing

Earley: The Valid Prefix Property (VPP) (1)

• The Earley algorithm, as presented, does not have the VPP.

• In other words, there are items which are not part of a

derivation from an initial α with the span of the derived tree

up to the dotted node being a prefix of a word in the language.

Grammar Formalisms 31 TAG Parsing

Kallmeyer Sommersemester 2011

Earley: The Valid Prefix Property (VPP) (2)

Example:

α

S

d S

b

β

S

S∗ c

Every word in the language starts with d.

Grammar Formalisms 32 TAG Parsing

Earley: The Valid Prefix Property (VPP) (3)

Input bccc leads (among others) to the following items:

Item Rule

1. [α, ε, la, 0, –, –, 0, 0] initialize

2. [β, ε, la, 0, –, –, 0, 0] predictAdjoinable from 1.

. . .

3. [β, 1, lb, 0, –, –, 0, 0]

4. [α, 2, lb, 0, –, –, 0, 0] predictAdjoined from 3.

. . .

5. [α, 2, rb, 0, –, –, 1, 0]

6. [β, 1, rb, 0, 0, 1, 1, 0] completeFoot form 3. and 5.

. . .

7. [β, ε, ra,0, 0, 3, 4, 0] (after repeated adjunctions of β)

8. [α, 2, rb, 0, –, –, 4, 1] adjoin from 7. and 4.

Grammar Formalisms 33 TAG Parsing

Kallmeyer Sommersemester 2011

Earley: The Valid Prefix Property (VPP) (4)

• Reason for lack of VPP: neither predictAdjoined nor

completeFoot nor adjoin check for the existence of an item

that has triggered the prediction of this adjunction.

• Maintaining the VPP leads to deduction rules with more

indices. It was therefore considered to be costly: O(n9)

[Schabes and Joshi, 1988].

• But: in some rules, some of the indices are not relevant for the

rule and can be factored out (treated as “don’t care”-values).

Therefore, a O(n6) VPP Earley algorithm is actually possible

[Nederhof, 1997].

Grammar Formalisms 34 TAG Parsing

References

[Joshi and Schabes, 1997] Joshi, A. K. and Schabes, Y. (1997).

Tree-Adjoning Grammars. In Rozenberg, G. and Salomaa, A.,

editors, Handbook of Formal Languages, pages 69–123. Springer,

Berlin.

[Kallmeyer and Satta, 2009] Kallmeyer, L. and Satta, G. (2009). A

polynomial-time parsing algorithm for tt-mctag. In Proceedings

of ACL, Singapore.

[Nederhof, 1997] Nederhof, M.-J. (1997). Solving the correct-prefix

property for TAGs. In Becker, T. and Krieger, H.-U., editors,

Proceedings of the Fifth Meeting on Mathematics of Language,

pages 124–130, Schloss Dagstuhl, Saarbrücken.

[Schabes and Joshi, 1988] Schabes, Y. and Joshi, A. K. (1988). An

Earley-type parsing algorithm for Tree Adjoining Grammars. In

Grammar Formalisms 35 TAG Parsing

Kallmeyer Sommersemester 2011

Proceedings of the 26th Annual Meeting of the Association for

Computational Linguistics, pages 258–269.

[Vijay-Shanker and Joshi, 1985] Vijay-Shanker, K. and Joshi,

A. K. (1985). Some computational properties of Tree Adjoining

Grammars. In Proceedings of the 23rd Annual Meeting of the

Association for Computational Linguistics, pages 82–93.

Grammar Formalisms 36 TAG Parsing

