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CYK: Items (1)

CYK-Parsing for TAG:

• First presented in [Vijay-Shanker and Joshi, 1985], formulation

with deduction rules in [Kallmeyer and Satta, 2009].

• Assumption: elementary trees are such that each node has at

most two daughters. (Any TAG can be transformed into an

equivalent TAG satisfying this condition.)

• The algorithm simulates a bottom-up traversal of the derived

tree.
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CYK: Items (2)

• At each moment, we are in a specific node in an elementary

tree and we know about the yield of the part below. Either

there is a foot node below, then the yield is separated into two

parts. Or there is no foot node below and the yield is a single

substring of the input.

• We need to keep track of whether we have already adjoined at

the node or not since at most one adjunction per node can

occur. For this, we distinguish between a bottom and a top

position for the dot on a node. Bottom signifies that we have

not performed an adjunction.
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CYK: Items (3)

Item form: [γ, pt, i, f1, f2, j] where

• γ ∈ I ∪ A,

• p is the Gorn address of a node in γ (ǫ for the root, pi for the

ith daughter of the node at address p),

• subscript t ∈ {⊤,⊥} specifies whether substitution or

adjunction has already taken place (⊤) or not (⊥) at p, and

• 0 ≤ i ≤ f1 ≤ f2 ≤ j ≤ n are indices with i, j indicating the left

and right boundaries of the yield of the subtree at position p

and f1, f2 indicating the yield of a gap in case a foot node is

dominated by p. We write f1 = f2 = – if no gap is involved.
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CYK: Inference rules (1)

Goal items: [α, ǫ⊤, 0, –, –, n] where α ∈ I

We need two rules to process leaf nodes while scanning their labels,

depending on whether they have terminal labels or labels ǫ:

Lex-scan:
[γ, p⊤, i, –, –, i + 1]

l(γ, p) = wi+1

Eps-scan:
[γ, p⊤, i, –, –, i]

l(γ, p) = ǫ

(Notation: l(γ, p) is the label of the node at address p in γ.)
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CYK: Inference rules (2)

•

wi+1

i i + 1

Lex-scan

•

ǫ
i i

Eps-scan
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CYK: Inference rules (3)

The rule foot-predict processes the foot node of auxiliary trees

β ∈ A by guessing the yield below the foot node:

Foot-predict:
[β, p⊤, i, i, j, j]

β ∈ A, p foot node address in β, i ≤ j

A

•

A∗

i j
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CYK: Inference rules (4)

When moving up inside a single elementary tree, we either move

from only one daughter to its mother, if this is the only daughter,

or we move from the set of both daughters to the mother node:

Move-unary:

[γ, (p · 1)⊤, i, f1, f2, j]

[γ, p⊥, i, f1, f2, j]
node address p · 2 does not exist in γ

Move-binary:
[γ, (p · 1)⊤, i, f1, f2, k], [γ, (p · 2)⊤, k, f ′

1, f
′

2, j]

[γ, p⊥, i, f1 ⊕ f ′

1, f2 ⊕ f ′

2, j]

(f ′ ⊕ f ′′ = f where f = f ′ if f ′′ = –, f = f ′′ if f ′ = –, and f is undefined

otherwise)
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CYK: Inference rules (5)

Move-unary:

γ A

•

B

i j

;

γ
A
•

B

i j
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CYK: Inference rules (6)

Move-binary:

γ A

•

B C

i k

γ A

B
•

C

k j

;

γ
A
•

B C

i j
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CYK: Inference rules (7)

For nodes that do not require adjunction, we can move from the

bottom position of the node to its top position.

Null-adjoin:
[γ, p⊥, i, f1, f2, j]

[γ, p⊤, i, f1, f2, j]
fOA(γ, p) = 0

γ
A
•

i j

;
γ

•

A

i j
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CYK: Inference rules (8)

The rule substitute performes a substitution:

Substitute:
[α, ǫ⊤, i, –, –, j]

[γ, p⊤, i, –, –, j]
l(α, ǫ) = l(γ, p)

•

A

α

i j

;
γ

•

A
i j
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CYK: Inference rules (9)

The rule adjoin adjoins an auxiliary tree β at p in γ, under the

precondition that the adjunction of β at p in γ is allowed:

Adjoin:
[β, ǫ⊤, i, f1, f2, j], [γ, p⊥, f1, f

′

1, f
′

2, f2]

[γ, p⊤, i, f ′

1, f
′

2, j]
β ∈ fSA(γ, p)
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CYK: Inference rules (10)

Adjoin:

•

A

β

A∗

i f1 f2 j

γ
A
•

f1 f2

;
γ

•

A

i j
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CYK: Complexity

Complexity of the algorithm: What is the upper bound for the

number of applications of the adjoin operation?

• We have |A| possibilities for β, |A∪ I| for γ, m for p where m is

the maximal number of internal nodes in an elementary tree.

• The six indices i, f1, f
′

1, f
′

2, f2, j range from 0 to n.

Consequently, adjoin can be applied at most |A||A ∪ I|m(n + 1)6

times and therefore, the time complexity of this algorithm is O(n6).
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Earley: Introduction (1)

• Left-to-right CYK parser very slow: O(n6) worst case and best

case (just as in CFG version of CYK, to many partial trees not

pertinent to the final tree are produced).

• Behaviour is due to pure bottom-up approach, no predictive

information whatsoever is used.

• Goal: Earley-style parser! First in [Schabes and Joshi, 1988].

Here, we present the algorithm from [Joshi and Schabes, 1997].

We assume a TAG without substitution nodes.
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Earley: Introduction (2)

• Earley Parsing: Left-to-right scanning of the string (using

predictions to restrict hypothesis space)

• Traversal of elementary trees, current position marked with a

dot.

The dot can have exactly four positions with respect to the

node: left above (la), left below (lb), right above (ra), right

below (rb).
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Earley: Introduction (3)

General idea: Whenever we are

• left above a node, we can predict an adjunction and start the

traversal of the adjoined tree;

• left of a foot node, we can move back to the adjunction site and

traverse the tree below it;

• right of an adjunction site, we continue the traversal of the

adjoined tree at the right of its foot node;

• right above the root of an auxiliary tree, we can move back to

the right of the adjunction site.
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Earley: Items (1)

What kind of information do we need in an item characterizing a

partial parsing result?

[α, dot, pos, i, j, k, l, sat?]

where

• α ∈ I ∪ A is a (dotted) tree, dot and pos the address and

location of the dot

• i, j, k, l are indices on the input string, where i, l ∈ {0, . . . , n},

j, k ∈ {0, . . . , n} ∪ {−}, n = |w|, − means unbound value

• sat? is a flag. It controls (prevents) multiple adjunctions at a

single node (sat? = 1 means that something has already been

adjoined to the dotted node)
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Earley: Items (2)

What do the items mean?

• [α, dot, la, i, j, k, l, 0]: In α part left of the dot ranges from i to

l. If α is an auxiliary tree, part below foot node ranges from j

to k.

• [α, dot, lb, i,−,−, i, 0]: In α part below dotted node starts at

position i.

• [α, dot, rb, i, j, k, l, sat?]: In α part below dotted node ranges

from i to l. If α is an auxiliary tree, part below foot node

ranges from j to k. If sat? = 0, nothing was adjoined to dotted

node, sat? = 1 means that adjunction took place.

• [α, dot, ra, i, j, k, l, 0]: In α part left and below dotted node

ranges from i to l. If α is an auxiliary tree, part below foot

node ranges from j to k.
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Earley: Items (3)

Some notational conventions:

• We use Gorn addresses for the nodes: 0 is the address of the

root, i (1 ≤ i) is the address of the ith daughter of the root,

and for p 6= 0, p · i is the address of the ith daughter of the

node at address p.

• For a tree α and a Gorn address dot, α(dot) denotes the node

at address dot in α (if defined).
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Earley: Inference Rules (1)

ScanTerm
[γ, dot, la, i, j, k, l, 0]

[γ, dot, ra, i, j, k, l + 1, 0]
l(γ, dot) = wl+1

• wl+1wi+1 . . . wl

Scan-ε
[γ, dot, la, i, j, k, l, 0]

[γ, dot, ra, i, j, k, l, 0]
l(γ, dot) = ε
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Earley: Inference Rules (2)

PredictAdjoinable
[γ, dot, la, i, j, k, l, 0]

[β, 0, la, l,−,−, l, 0]
β ∈ fSA(γ, dot)

•
A

wi+1 . . . wl

•
A

⇒

A∗

PredictNoAdj
[γ, dot, la, i, j, k, l, 0]

[γ, dot, lb, l,−,−, l, 0]
fOA(γ, dot) = 0
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Earley: Inference Rules (3)

PredictAdjoined

[β, dot, lb, l,−,−, l, 0]

[γ, dot′, lb, l,−,−, l, 0]
dot = foot(β), β ∈ fSA(γ, dot′)

•A

A

⇒

A∗

•
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Earley: Inference Rules (4)

CompleteFoot

[γ, dot, rb, i, j, k, l, 0], [β, dot′, lb, i,−,−, i, 0]

[β, dot′, rb, i, i, l, l, 0]

dot′=foot(β),

β∈fSA(γ,dot′)

•A ⇒

wi+1 . . . wl

A

A∗

•

A

A∗

•
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Earley: Inference Rules (5)

CompleteNode

[γ, dot, la, f, g, h, i, 0], [γ, dot, rb, i, j, k, l, sat?]

[γ, dot, ra, f, g⊕ j, h ⊕ k, l, 0]
l(β, dot) ∈ N

•A ⇒

wi+1 . . . wl

•
A

wf+1 . . . wi

•
A

wf+1 . . . wl
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Earley: Inference Rules (6)

Adjoin

[β, ε, ra, i, j, k, l, 0], [γ, dot, rb, j, p, q, k, 0]

[γ, dot, rb, i, p, q, l, 1]
β ∈ fSA(γ, p)

•
A

A∗

wi+1 . . . wj wk+1 . . . wl

•A ⇒

wj+1 . . . wk

•Aadj

wi+1 . . . wl

sat? = 1 prevents the new item from being reused in another Adjoin

application.
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Earley: Inference Rules (7)

Move the dot to daughter/sister/mother:

MoveDown:
[γ, dot, lb, i, j, k, l, 0]

[γ, dot · 1, la, i, j, k, l, 0]
γ(dot · 1) is defined

MoveRight:
[γ, dot, ra, i, j, k, l, 0]

[γ, dot + 1, la, i, j, k, l, 0]
γ(dot + 1) is defined

MoveUp:
[γ, dot · m, ra, i, j, k, l, 0]

[γ, dot, rb, i, j, k, l, 0]
γ(dot · m + 1) is not defined
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Earley: Inference Rules (8)

Initialize:
[α, ε, la, 0,−,−, 0, 0]

α ∈ I, l(α, ε) = S

Goal item: [α, 0, ra, 0,−,−, n, 0], α ∈ I
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Earley: The Valid Prefix Property (VPP) (1)

• The Earley algorithm, as presented, does not have the VPP.

• In other words, there are items which are not part of a

derivation from an initial α with the span of the derived tree

up to the dotted node being a prefix of a word in the language.
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Earley: The Valid Prefix Property (VPP) (2)

Example:

α

S

d S

b

β

S

S∗ c

Every word in the language starts with d.
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Earley: The Valid Prefix Property (VPP) (3)

Input bccc leads (among others) to the following items:

Item Rule

1. [α, ε, la, 0, –, –, 0, 0] initialize

2. [β, ε, la, 0, –, –, 0, 0] predictAdjoinable from 1.

. . .

3. [β, 1, lb, 0, –, –, 0, 0]

4. [α, 2, lb, 0, –, –, 0, 0] predictAdjoined from 3.

. . .

5. [α, 2, rb, 0, –, –, 1, 0]

6. [β, 1, rb, 0, 0, 1, 1, 0] completeFoot form 3. and 5.

. . .

7. [β, ε, ra,0, 0, 3, 4, 0] (after repeated adjunctions of β)

8. [α, 2, rb, 0, –, –, 4, 1] adjoin from 7. and 4.
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Earley: The Valid Prefix Property (VPP) (4)

• Reason for lack of VPP: neither predictAdjoined nor

completeFoot nor adjoin check for the existence of an item

that has triggered the prediction of this adjunction.

• Maintaining the VPP leads to deduction rules with more

indices. It was therefore considered to be costly: O(n9)

[Schabes and Joshi, 1988].

• But: in some rules, some of the indices are not relevant for the

rule and can be factored out (treated as “don’t care”-values).

Therefore, a O(n6) VPP Earley algorithm is actually possible

[Nederhof, 1997].
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