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Ranges (1)

• During parsing we have to link the terminals and variables in

our LCFRS rules to portions of the input string.

• These can be characterized by their start and end positions.

• A range is an pair of indices that characterizes the span of a

component within the input and a range vector characterizes a

tuple in the yield of a non-terminal.

• The range instantiation of a rule specifies the computation of

an element from the lefthand side yield from elements of in the

yields of the right-hand side non-terminals based on the

corresponding range vectors.
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Ranges (2)

Example: Rule A(aXa, bY b) → B(X)C(Y ) and input string

abababcb.

We assume without loss of generality that our LCFRSs are

monotone and ε-free. Furthermore, because of the linearity, the

components of a tuple in the yield of an LCFRS non-terminal are

necessarily non-overlapping. Then, given this input, we have the

following possible instantiations for this rule:

A(0aba3, 3bab6) → B(1b2, 4a5) A(0aba3, 3babcb8) → B(1b2, 4abc7)

A(0aba3, 5bcb8) → B(1b2, 6c7) A(0ababa5, 5bcb8) → B(1bab4, 6c7)

A(2aba5, 5bcb8) → B(3b4, 6c7)

Grammar Formalisms 4 LCFRS Parsing



Kallmeyer Sommersemester 2011

Ranges (3)

Definition 1 (Range) Let w ∈ T ∗ be a word with w = w1 . . .wn

where wi ∈ T for 1 ≤ i ≤ n.

1. Pos(w) := {0, . . . , n}.

2. We call a pair 〈l, r〉 ∈ Pos(w)× Pos(w) with l ≤ r a range in

w. Its yield 〈l, r〉(w) is the substring wl+1 . . . wr.

3. For two ranges ρ1 = 〈l1, r1〉, ρ2 = 〈l2, r2〉, if r1 = l2, then the

concatenation of ρ1 and ρ2 is ρ1 · ρ2 = 〈l1, r2〉; otherwise ρ1 · ρ2

is undefined.

4. Two ranges 〈l1, r1〉, 〈l2, r2〉 are overlapping if

(a) either l1 ≤ l2 < r1 and l1 < r2

(b) or l1 < r2 ≤ r1 and l2 < r1.
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Ranges (3)

Definition 2 (Range vector)

Let w ∈ T ∗.

1. A ~ρ ∈ (Pos(w)× Pos(w))k is a k-dimensional range vector for

w iff ~ρ = 〈〈l1, r1〉, . . . , 〈lk, rk〉〉 where 〈li, ri〉 is a range in w for

1 ≤ i ≤ k.

2. For a k-dimensional range vector ~ρ for w we define the

denotation of ~ρ as ~ρ(w) := 〈〈l1, r1〉(w), . . . , 〈lk, rk〉(w)〉.

A range vector ~ρ is called simple iff its elements are pairwise

non-overlapping.
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Ranges (3)

Definition 3 (Range instantiation, [Boullier, 2000]) Let

G = (N, T, V, P, S) be a LCFRS. For a given rule

γ = A(~α) → A1( ~α1) · · ·Am( ~αm) ∈ P (0 ≤ m),

1. a range instantiation with respect to a string w = t1 . . . tn is a

function f : {t′ | t′ is an occurrence of some t ∈ T in the

clause} ∪ V ∪ {Epsi | 1 ≤ i ≤ dim(A), ~α(i) = ε} → {〈i, j〉 | i ≤

j, i, j ∈ IN} such that

a) for all occurrences t′ of a t ∈ T in ~α, f(t′)(w) = t,

b) for all X ∈ V , f(X) = 〈j, k〉 for some 0 ≤ j ≤ k ≤ n,

c) for all x, y adjacent in one of the elements of ~α there are

i, j, k with f(x) = 〈i, j〉, f(y) = 〈j, k〉; we define then

f(xy) = 〈i, k〉,
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d) for all Eps ∈ {Epsi | 1 ≤ i ≤ dim(A), ~α(i) = ε}, there is a j,

0 ≤ j ≤ n with f(Eps) = 〈j, j〉; we define then for every

ε-argument ~α(i) that f(~α(i)) = f(Epsi);

2. if f is an instantiation of a γ, then

A(f(~α)) → A1(f( ~α1)) · · ·Am(f( ~αm)) is an instantiated rule

where f(〈x1, . . . , xk〉) = 〈f(x1), . . . , f(xk)〉.
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CYK Parsing (1)

First introduced in [Seki et al., 1991]; deduction-based definition in,

e.g., [Kallmeyer and Maier, 2010].

Idea: Once all predicates in the RHS of a rules have been found,

complete LHS, more precisely:

• We start with the terminal symbols: whenever we can find a

range instantiation of a rule with rhs ε, we conclude that this

rule can be applied (scan operation),

• We traverse the derivation tree bottom-up: whenever, for a

range instantiation of a rule, all pairs of non-terminal symbol

and range vector in the rhs have been found, we conclude that

this rule can be applied and the lhs of the instantiated rule is

deduced (complete operation).

• Our input w is in the language iff S with range vector 〈〈0, n〉〉

is in the final set of results that we have deduced.
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CYK Parsing (2)

Deduction rules:

Items [A, ~ρ] with A ∈ N , ~ρ is a dim(A)-dimensional range vector in

w.

Axioms:
[A, ~ρ]

A(~ρ) → ε a range instantiated rule

Complete:
[A1, ~ρ1], . . . , [Am, ~ρm]

[A, ~ρ]

A(~ρ) → A1( ~ρ1), . . . , Am( ~ρm)

a range instantiated rule

Goal item: [S, 〈〈0, n〉〉]
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CYK Parsing (3)

Deduction rules for binarized ε-free grammars where, without loss

of generality, either the lhs contains a single terminal and the rhs is

ε or the rule contains only variables:

Items and goal as before.

Scan:
[A, 〈〈i, i+ 1〉〉]

A(wi+1) → ε ∈ P

Unary:
[B, ~ρ]

[A, ~ρ]
A(~α) → B(~α) ∈ P

Binary:
[B, ~ρB], [C, ~ρC]

[A, ~ρA]

A( ~ρA) → B( ~ρB)C( ~ρC)

is a range instantiated rule
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CYK Parsing (4)

Complexity of CYK parsing with binarized LCFRSs:

We have to consider the maximal number of possible applications

of the complete rule.

Binary:
[B, ~ρB], [C, ~ρC]

[A, ~ρA]

A( ~ρA) → B( ~ρB)C( ~ρC)

is a range instantiated rule

If k is the maximal fan-out in the LCFRS, we have maximal 2k

range boundaries in each of the antecedent items of this rule. For

variables X1, X2 being in the same lhs side argument of the rule,

X1 left of X2 and no other variables in between, the right boundary

of X1 is the left boundary of X2. In the worst case, A,B,C all have

fan-out k and each lhs argument contains two variables. This gives

3k independent range boundaries and consequently a time

complexity of O(n3k) for the entire algorithm.
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Incremental Earley Parsing

Strategy:

• Process LHS arguments incrementally, starting from an S-rule

• Whenever we reach a variable, move into rule of correponding

rhs non-terminal (predict or resume).

• Whenever we reach the end of an argument, suspend the rule

and move into calling parent rule.

• Whenever we reach the end of the last argument convert item

into a passive one and complete parent item.

This parser is described in [Kallmeyer and Maier, 2009] and

inspired by the Thread Automata in

[Villemonte de La Clergerie, 2002]
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Incremental Earley Parsing: Items

• Passive items: [A, ~ρ] where A is a non-terminal of fan-out k

and ~ρ is a range vector of fan-out k

• Active items:

[A(~φ) → A1( ~φ1) . . . Am( ~φm), pos, 〈i, j〉, ~ρ]

where

• A(~φ) → A1( ~φ1) . . .Am( ~φm) ∈ P ;

• pos ∈ {0, . . . , n}: We have reached input position pos;

• 〈i, j〉 ∈ IN2: We have reached the jth element of ith argument

(dot position);

• ~ρ is a range vector containing variable and terminal bindings.

All elements are initialized to “?”, an initialized vector is called

~ρinit.
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Incremental Earley Parsing: Example (1)

S(X1X2) −→ A(X1, X2) A(aX1, bX2) −→ A(X1, X2) A(a, b) −→ ε

Parsing trace for input w = aabb:

pos item ~ρ

1 0 S(•X1X2) −→ A(X1, X2) (?, ?) axiom

2 0 A(•aX1, bX2) −→ A(X1, X2) (?, ?, ?, ?) predict, 1

3 0 A(•a, b) −→ ε (?, ?) predict, 1

4 1 A(a •X1, bX2) −→ A(X1, X2) (〈0, 1〉, ?, ?, ?) scan, 2

5 1 A(a•, b) −→ ε (〈0, 1〉, ?) scan, 3

6 1 A(•aX1, bX2) −→ A(X1, X2) (?, ?, ?, ?) predict, 4

7 1 A(•a, b) −→ ε (?, ?) predict 4

8 1 S(X1 •X2) −→ A(X1, X2) (〈0, 1〉, ?) susp. 5, 1

9 1 A(a, •b) −→ ε (〈0, 1〉, ?) resume 5, 8
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Incremental Earley Parsing: Example (2)

10 2 A(a •X1, bX2) −→ A(X1, X2) (〈1, 2〉, ?, ?, ?) scan 6

11 2 A(a•, b) −→ ε (〈1, 2〉, ?) scan 7

12 2 A(•aX1, bX2) −→ A(X1, X2) (?, ?, ?, ?) predict 10

13 2 A(•a, b) −→ ε (?, ?) predict 10

14 2 A(aX1•, bX2) −→ A(X1, X2) (〈0, 1〉, 〈1, 2〉, ?, ?) susp. 11, 4

15 2 S(X1 •X2) −→ A(X1, X2) (〈0, 2〉, ?) susp. 14, 1

16 2 A(aX1, •bX2) −→ A(X1, X2) (〈0, 1〉, 〈1, 2〉, ?, ?) resume 14, 15

17 3 A(aX1, b •X2) −→ A(X1, X2) (〈0, 1〉, 〈1, 2〉, 〈2, 3〉, ?) scan 16

18 3 A(a, •b) −→ ε (〈1, 2〉, ?) resume 11, 17
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Incremental Earley Parsing: Example (3)

19 4 A(a, b•) −→ ε (〈1, 2〉, 〈3, 4〉) scan 18

20 4 A(〈1, 2〉, 〈3, 4〉) convert 19

21 4 A(aX1, bX2•) −→ A(X1, X2) (〈0, 1〉, 〈1, 2〉, 〈2, 3〉, 〈3, 4〉) compl. 17, 20

22 4 A(〈0, 2〉, 〈2, 4〉) convert 21

23 4 S(X1X2•) −→ A(X1, X2) (〈0, 2〉, 〈2, 4〉) compl. 15, 22

24 4 S(〈0, 4〉) convert 23
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Incremental Earley Parsing: Deduction Rules

• Notation:

– ~ρ(X): range bound to variable X .

– ~ρ(〈i, j〉): range bound to jth element of ith argument on

LHS.

• Applying a range vector ~ρ containing variable bindings for

given rule c to the argument vector of the lefthand side of c

means mapping the ith element in the arguments to ~ρ(i) and

concatenating adjacent ranges. The result is defined iff every

argument is thereby mapped to a range.
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Incremental Earley Parsing: Initialize, Goal item

Initialize:
[S(~φ) → ~Φ, 0, 〈1, 0〉, ~ρinit]

S(~φ) → ~Φ ∈ P

Goal Item: [S(~φ) → ~Φ, n, 〈1, j〉, ψ] with |~φ(1)| = j (i.e., dot at the

end of lhs argument).

Grammar Formalisms 19 LCFRS Parsing

Kallmeyer Sommersemester 2011

Incremental Earley Parsing: Scan

If next symbol after dot is next terminal in input, scan it.

Scan:
[A(~φ) → ~Φ, pos, 〈i, j〉, ~ρ]

[A(~φ) → ~Φ, pos+ 1, 〈i, j + 1〉, ~ρ′]
~φ(i, j + 1) = wpos+1

where ~ρ′ is ~ρ updated with ~ρ(〈i, j + 1〉) = 〈pos, pos+ 1〉.
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Incremental Earley Parsing: Predict

Whenever our dot is left of a variable that is the first argument of

some rhs non-terminal B, we predict new B-rules:

Predict:
[A(~φ) → . . .B(X, . . .) . . . , pos, 〈i, j〉, ~ρA]

[B(~ψ) → ~Ψ, pos, 〈1, 0〉, ~ρinit]

where ~φ(i, j + 1) = X,B(~ψ) → ~Ψ ∈ P
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Incremental Earley Parsing: Suspend

Suspend:

[B(~ψ) → ~Ψ, pos′, 〈i, j〉, ~ρB], [A(~φ) → . . .B(~ξ) . . . , pos, 〈k, l〉, ~ρA]

[A(~φ) → . . .B(~ξ) . . . , pos′, 〈k, l+ 1〉, ~ρ]

where

• the dot in the antecedent A-item precedes the variable ~ξ(i),

• |~ψ(i)| = j (ith argument has length j, i.e., is completely

processed),

• |~ψ| < i (ith argument is not the last argument of B),

• ~ρB(~ψ(i)) = 〈pos, pos′〉

• and for all 1 ≤ m < i: ~ρB(~ψ(m)) = ~ρA(~ξ(m)).

~ρ is ~ρA updated with ~ρA(~ξ(i)) = 〈pos, pos′〉.
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Incremental Earley Parsing: Convert

Whenever we arrive at the end of the last argument, we convert the

item into a passive one:

Convert:

[B(~ψ) → ~Ψ, pos, 〈i, j〉, ~ρB]

[B, ρ]
|~ψ(i)| = j, |~ψ| = i, ~ρB(~ψ) = ρ
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Incremental Earley Parsing: Complete

Whenever we have a passive B item we can use it to move the dot

over the variable of the last argument of B in a parent A-rule:

Complete:
[B, ~ρB], [A(~φ) → . . .B(~ξ) . . . , pos, 〈k, l〉, ~ρA]

[A(~φ) → . . .B(~ξ) . . . , pos′, 〈k, l+ 1〉, ~ρ]
where

• the dot in the antecedent A-item precedes the variable ~ξ(|~ρB|),

• the last range in ~ρB is 〈pos, pos′〉,

• and for all 1 ≤ m < |~ρB|: ~ρB(m) = ~ρA(~ξ(m)).

~ρ is ~ρA updated with ~ρA(~ξ(|~ρB|)) = 〈pos, pos′〉.
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Incremental Earley Parsing: Resume

Whenever we are left of a variable that is not the first argument of

one of the rhs non-terminals, we resume the rule of the rhs

non-terminal.

Resume:

[A(~φ) → . . .B(~ξ) . . . , pos, 〈i, j〉, ~ρA],

[B(~ψ) → ~Ψ, pos′, 〈k − 1, l〉, ~ρB]

[B(~ψ) → ~Ψ, pos, 〈k, 0〉, ~ρB]

where

• ~φ(i, j + 1) = ~ξ(k), k > 1 (the next element is a variable that is

the kth element in ~ξ, i.e., the kth argument of B),

• |~ψ(k − 1)| = l, and

• ~ρA(~ξ(m)) = ~ρB(~ψ(m)) for all 1 ≤ m ≤ k − 1.
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Incremental Earley Parsing: Filters

• Filters can be applied to decrease the number of items in the

chart

• A filter is an additional condition on the form of items.

• E.g., in a ε-free grammar, the number of variables in the part

of the lefthand side arguments of a rule that has not been

processed yet must be lower or equal to the length of the

remaining input.
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Incremental Earley Parsing: Remaining Input Length

Filter

• In ε-free grammars each variable must cover at least one input

symbol.

• i input symbols left implies no prediction of a clause with more

than i variables or terminals on LHS since no instantiation is

possible

• Condition on active items, can be applied with predict, resume,

suspend and complete

An item [A(~φ) → A1( ~φ1) . . .Am( ~φm), pos, 〈i, j〉, ~ρ] satisfies the

length filter iff

(n− pos) ≥ (|~φ(i)| − j) + Σ
dim(A)
k=i+1 |~φ(k)|
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Incremental Earley Parsing: Preterminal Filter (1)

• Check for the presence of (pre)terminals in the predicted part

of a clause in the remaining input, and

• check that terminals appear in the predicted order and that

distance between two of them is at least the number of

variables/terminals in between.

continued. . .
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Incremental Earley Parsing: Preterminal Filter (2)

In other words, an active item

[A(~φ) → A1( ~φ1) . . .Am( ~φm), pos, 〈i, j〉, ~ρ] satisfies the preterminal

filter iff we can find an injective mapping

fT : Term = {〈k, l〉 | ~φ(k, l) ∈ T and either k > i or (k = i and

l > j)} → {pos+ 1, . . . , n} such that

1. wfT (〈k,l〉) = ~φ(k, l) for all 〈k, l〉 ∈ Term;

2. for all 〈k1, l1〉, 〈k2, l2〉 ∈ Term with k1 = k2 and l1 < l2:

fT (〈k2, l2〉) ≥ fT (〈k1, l1〉) + (l2 − l1);

3. for all 〈k1, l1〉, 〈k2, l2〉 ∈ Term with k1 < k2:

fT (〈k2, l2〉) ≥ fT (〈k1, l1〉) + (|~φ(k1)| − l1) + Σk2−1
k=k1+1|

~φ(k)|+ l2.
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