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Introduction (1)

• A normal form for a grammar formalism puts additional

constraints on the form of the grammar while keeping the

generative capacity.

• In other words, for every grammar G of a certain formalism,

one can construct a weakly equivalent grammar G′ of the same

formalism that satisfies additional normal form constraints.

• Example: For CFGs we know that we can construct equivalent

ε-free CFGs, equivalent CFGs in Chomsky Normal Form and

equivalent CFGs in Greibach Normal Form.

• Normal Forms are useful since they facilitate proofs of

properties of the grammar formalism.
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Eliminating useless rules (1)

[Boullier, 1998] shows a range of useful properties of simple RCG

that can help to make formal proofs and parsing easier.

Boullier defines clauses that cannot be used in derivations

S(〈0, n〉)
∗
⇒ ε for any w ∈ T ∗ as useless.

Proposition 1 For each simple k-RCG G, there exists an

equivalent simple k′-RCG G′ with k′ ≤ k that does not contain

useless rules.

Grammar Formalisms 4 LCFRS Normal Forms



Kallmeyer Sommersemester 2011

Eliminating useless rules (2)

The removal of the useless rules can be done in the same way as in

the CFG case [Hopcroft and Ullman, 1979]:

1. All rules need to be eliminated that cannot lead to a terminal

sequence.

This can be done recursively: Starting from the terminating

rules and following the rules from right to left, the set of all

non-terminals leading to terminals can be computed recursively.
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Eliminating useless rules (3)

1. (continued)

We can characterize this set NT with the following deduction

rules:

[A]
A(~α) → ε ∈ P

[A1], . . . , [Am]

[A]
A(~α) → A1( ~α1) . . .Am( ~αm) ∈ P

All rules that contain non-terminals in their right-hand side

that are not in this set are eliminated.
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Eliminating useless rules (4)

2. Then the unreachable rules need to be eliminated.

This is done starting from all S-rules and moving from

left-hand sides to right-hand sides. If the right-hand side

contains a predicate A, then all A-rules are reachable and so

on. Each time, the rules for the predicates in a right-hand side

are added.

We can characterize the set NS of non-terminals reachable

from S with the following deduction rules:

[S]

[A]

[A1], . . . , [Am]
A(~α) → A1( ~α1) . . .Am( ~αm) ∈ P

Rules whose left-hand side predicate is not in this set are

eliminated.
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Eliminating ε-rules (1)

[Boullier, 1998, Seki et al., 1991] show that the elimination of

ε-rules is possible in a way similar to CFG. We define that a rule is

an ε-rule if one of the arguments of the left-hand side is the empty

string ε.

Definition 1 A simple RCG is ε-free if it either contains no

ε-rules or there is exactly one rule S(ε) → ε and S does not appear

in any of the right-hand sides of the rules in the grammar.

Proposition 2 For every simple k-RCG G there exists an

equivalent ε-free simple k′-RCG G′ with k′ ≤ k.
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Eliminating ε-rules (2)

• First, we have to compute for all predicates A, all possibilities

to have empty ranges among the components of the yields.

• For this, we introduce vectors ~ι ∈ {0, 1}dim(A) and we generate

a set Nε of pairs (A,~ι) where ~ι signifies that it is possible for A

to have a tuple τ in its yield with τ(i) = ε if ~ι(i) = 0 and

τ(i) 6= ε if ~ι(i) 6= 0.

Example:

S(XY ) → A(X, Y ), A(a, ε) → ε, A(ε, a) → ε, A(a, b) → ε

Set of pairs characterizing possibilities for ε-components:

Nε = {(S, 1), (A, 10), (A, 01), (A, 11)}
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Eliminating ε-rules (3)

The set Nε is constructed recursively:

1. Nε = ∅.

2. For every rule A(x1, . . . , xdim(A)) → ε, add (A,~ι) to Nε with for

all 1 ≤ i ≤ dim(A): ~ι(i) = 0 if xi = ε, else ~ι(i) = 1.

3. Repeat until Nε does not change any more:

For every rule A(x1, . . . , xdim(A)) → A1(α1) . . .Ak(αk) and all

(A1,~ι1), . . . , (Ak,~ιk) ∈ Nε:

Calculate a vector (x′
1, . . . , x

′
dim(A)) from (x1, . . . , xdim(A)) by

replacing every variable that is the jth variable of Am in the

right-hand side such that ~ιm(j) = 0 with ε.

Then add (A,~ι) to Nε with for all 1 ≤ i ≤ dim(A): ~ι(i) = 0 if

x′
i = ε, else ~ι(i) = 1.
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Eliminating ε-rules (4)

Now that we have the set Nε we can obtain reduced rules from the

ones in the grammar where ε-arguments are left out.

Example:

S(XY ) → A(X, Y ), A(a, ε) → ε, A(ε, a) → ε, A(a, b) → ε

Nε = {(S, 1), (A, 10), (A, 01), (A, 11)}

Rules after ε-elimination ((A,~ι) is written A~ι):

S′(X) → S1(X), (S′ takes care of the case of ε ∈ L(G))

S1(X) → A10(X), A10(a) → ε,

S1(X) → A01(X), A01(b) → ε,

S1(XY ) → A11(X, Y ), A11(a, b) → ε
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Eliminating ε-rules (5)

To obtain the new rules Pε, we proceed as follows:

1. Pε = ∅

2. We pick a new start symbol S′ /∈ Nε.

If ε ∈ L(G), we add S′(ε) → ε to Pε.

If S1 ∈ Nε, we add S′(X) → S1(X) to Pε.

3. For every rule A(α) → A1(~x1) . . .Ak(~xk) ∈ P : add all

ε-reductions of this rule to Pε.
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Eliminating ε-rules (6)

The ε-reductions of A(α) → A1(~x1) . . .Ak(~xk) are obtained as

follows:

For all combinations of ~ι1, . . . ,~ιk such that A~ιi
i ∈ Nε for 1 ≤ i ≤ k:

(i) For all i, 1 ≤ i ≤ k: replace Ai in the rhs with A~ιi
i and for all j,

1 ≤ j ≤ dim(Ai): if ~ιi(j) = 0, then remove the jth component

of A~ιi
i from the rhs and delete the variable ~xi(j) in the lhs.

(ii) Let ~ι ∈ {0, 1}dim(A) be the vector with ~ι(i) = 0 iff the ith

component of A is empty in the rule obtained from (i). Remove

all ε-components in the lhs and replace A with A~ι.

Grammar Formalisms 13 LCFRS Normal Forms

Kallmeyer Sommersemester 2011

Ordered Simple RCG (1)

In general, in MCFG/LCFRS/simple RCG, when using a rule in a

derivation, the order of the components of its lhs in the input is not

necessarily the order of the components in the rule.

Example:

S(XY ) → A(X, Y ), A(aXb, cY d) → A(Y,X), A(e, f)→ ε.

String language:

{(ac)ne(db)n(ca)nf(bd)n |n ≥ 0}

∪{(ac)nafb(db)n(ca)nced(bd)n |n ≥ 0}
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Ordered Simple RCG (2)

Definition 2 (Ordered simple RCG) A simple RCG is ordered

if for every rule A(~α) → A1( ~α1) . . .Ak( ~αk) and every

Ai( ~αi) = Ai(Y1, . . . , Ydim(Ai)) (1 ≤ i ≤ k), the order of the

components of ~αi in ~α is Y1, . . . , Ydim(Ai).

Proposition 3 For every simple k-RCG G there exists an

equivalent ordered simple k-RCG G′.

[Michaelis, 2001, Kracht, 2003, Kallmeyer, 2010]

In LCFRS terminology, this property is called monotone while in

MCFG terminology, it is called non-permuting.
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Ordered Simple RCG (3)

Idea of the transformation:

• We check for every rule whether the component order in one of

the right-hand side predicates A does not correspond to the

one in the left-hand side.

• If so, we add a new predicate that differs from A only with

respect to the order of the components. We replace A in the

rule with the new predicate with reordered components.

• Furthermore, we add a copy of every A-rule with A replaced in

the left-hand side by the new predicate and reordering of the

components.

We notate the permutations of components as vectors where the

ith element is the image of i. For a predicate A, id is the vector

〈1, 2, . . . , dim(A)〉.
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Ordered Simple RCG (4)

Transformation into an ordered simple RCG:

P ′ := P with all predicates A replaced with Aid;

N ′ := {Aid |A ∈ N};

repeat until P ′ does not change any more:

for all r = Ap(~α) → Ap1
1 ( ~α1) . . . A

pk
k ( ~αk) in P ′:

for all i, 1 ≤ i ≤ k:

if Api
i ( ~αi) = Api

i (Y1, . . . , Ydim(Ai)) and the order of the

Y1, . . . , Ydim(Ai) in ~α is p(Y1, . . . , Ydim(Ai))

where p is not the identity

then replace Api
i ( ~αi) in r with Api◦p

i (p( ~αi))

if Api◦p

i /∈ N ′ then add Api◦p

i to N ′ and

for every Api
i -rule Api

i (~γ) → Γ ∈ P ′:

add Api◦p

i (p(~γ)) → Γ to P ′
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Ordered Simple RCG (5)

Consider again our example

P ′ = {S(XY ) → A(X, Y ), A(aXb, cY d) → A(Y,X), A(e, f)→ ε}.

• Problematic rule: A〈1,2〉(aXb, cY d) → A〈1,2〉(Y,X)

• Introduce new non-terminal A〈2,1〉 where 〈2, 1〉 is the

permutation that switches the two arguments.

Replace A〈1,2〉(aXb, cY d) → A〈1,2〉(Y,X) with

A〈1,2〉(aXb, cY d) → A〈2,1〉(X, Y ).

• Add A〈2,1〉(f, e) → ε and A〈2,1〉(cY d, aXb) → A〈2,1〉(X, Y ).

• Now, A〈2,1〉(cY d, aXb) → A〈2,1〉(X, Y ) is problematic.

〈2, 1〉 ◦ 〈2, 1〉 = 〈1, 2〉, therefore we replace this rule with

A〈2,1〉(cY d, aXb) → A〈1,2〉(Y,X). A〈1,2〉 is no new

non-terminal, so no further rules are added.
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Ordered Simple RCG (6)

Result:

S〈1〉(XY ) → A〈1,2〉(X, Y ) A〈1,2〉(e, f) → ε

A〈1,2〉(aXb, cY d) → A〈2,1〉(X, Y ) A〈2,1〉(f, e) → ε

A〈2,1〉(cY d, aXb) → A〈1,2〉(Y,X)

Note that in general, this transformation algorithm is exponential

in the size of the original grammar.
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Binarization (1)

In LCFRS terminology, the length of the right-hand side of a

production is called its rank. The rank of an LCFRS is given by the

maximal rank of its productions.

Proposition 4 For every simple RCG/LCFRS G there exists an

equivalent simple RCG/LCFRS G′ that is of rank 2.

Unfortunately, the fan-out of G′ might be higher than the fan-out

of G.

The transformation can be performed similarly to the CNF

transformation for CFG

[Hopcroft and Ullman, 1979, Grune and Jacobs, 2008].
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Binarization (2)

Example:

S(XY ZUVW ) → A(X,U)B(Y, V )C(Z,W )

A(aX, aY ) → A(X, Y ) A(a, a) → ε

B(bX, bY ) → B(X, Y ) B(b, b) → ε

C(cX, cY ) → C(X, Y ) C(c, c) → ε

Equivalent binarized grammar:

S(XPUQ) → A(X,U)C1(P,Q) C1(Y Z, VW ) → B(Y, V )C(Z,W )

A(aX, aY ) → A(X, Y ) A(a, a) → ε

B(bX, bY ) → B(X, Y ) B(b, b) → ε

C(cX, cY ) → C(X, Y ) C(c, c) → ε
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Binarization (3)

We define the reduction of a vector ~α1 ∈ [(T ∪ V )∗]k1 by a vector

~x ∈ (V ∗)k2 where all variables in ~x occur in ~α1 as follows:

Take all variables from ~α1 (in their order) that are not in ~x while

starting a new component in the resulting vector whenever an

element is, in ~α1, the first element of a component or preceded by a

variable from ~x or a terminal.

Examples:

1. 〈aX1, X2, bX3〉 reduced with 〈X2〉 yields 〈X1, X3〉.

2. 〈aX1X2bX3〉 reduced with 〈X2〉 yields 〈X1, X3〉 as well.
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Binarization (4)

Transformation into a simple RCG of rank 2:

for all r = A(~α) → A0( ~α0) . . . Am( ~αm) in P with m > 1:

remove r from P and pick new non-terminals C1, . . . , Cm−1

R := ∅

add the rule A(~α) → A0( ~α0)C1( ~γ1) to R where ~γ1

is obtained by reducing ~α with ~α0

for all i, 1 ≤ i ≤ m− 2:

add the rule Ci(~γi) → Ai( ~αi)Ci+1( ~γi+1) to R where ~γi+1

is obtained by reducing ~γi with ~αi

add the rule Cm−1( ~γm−2) → Am−1( ~αm−1)Am( ~αm) to R

for every rule r′ ∈ R

replace rhs arguments of length > 1 with new variables

(in both sides) and add the result to P
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Binarization (5)

In our example, for the rule

S(XY ZUVW ) → A(X,U)B(Y, V )C(Z,W ), we obtain

R = { S(XY ZUVW ) → A(X,U)C1(Y Z, VW ),

C1(Y Z, VW ) → B(Y, V )C(Z,W ) }

Collapsing sequences of adjacent variables in the rhs leads to the

two rules

S(XPUQ) → A(X,U)C1(P,Q), C1(Y Z, VW ) → B(Y, V )C(Z,W )
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