
Kallmeyer Sommersemester 2011

Mildly Context-Sensitive Grammar

Formalisms:

LCFRS Normal Forms

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Sommersemester 2011

Grammar Formalisms 1 LCFRS Normal Forms

Kallmeyer Sommersemester 2011

Overview

1. Introduction

2. Eliminating useless rules

3. Eliminating ε-Rules

4. Ordered Simple RCG

5. Binarization

Grammar Formalisms 2 LCFRS Normal Forms

Kallmeyer Sommersemester 2011

Introduction (1)

• A normal form for a grammar formalism puts additional

constraints on the form of the grammar while keeping the

generative capacity.

• In other words, for every grammar G of a certain formalism,

one can construct a weakly equivalent grammar G′ of the same

formalism that satisfies additional normal form constraints.

• Example: For CFGs we know that we can construct equivalent

ε-free CFGs, equivalent CFGs in Chomsky Normal Form and

equivalent CFGs in Greibach Normal Form.

• Normal Forms are useful since they facilitate proofs of

properties of the grammar formalism.

Grammar Formalisms 3 LCFRS Normal Forms

Kallmeyer Sommersemester 2011

Eliminating useless rules (1)

[Boullier, 1998] shows a range of useful properties of simple RCG

that can help to make formal proofs and parsing easier.

Boullier defines clauses that cannot be used in derivations

S(〈0, n〉)
∗
⇒ ε for any w ∈ T ∗ as useless.

Proposition 1 For each simple k-RCG G, there exists an

equivalent simple k′-RCG G′ with k′ ≤ k that does not contain

useless rules.

Grammar Formalisms 4 LCFRS Normal Forms

Kallmeyer Sommersemester 2011

Eliminating useless rules (2)

The removal of the useless rules can be done in the same way as in

the CFG case [Hopcroft and Ullman, 1979]:

1. All rules need to be eliminated that cannot lead to a terminal

sequence.

This can be done recursively: Starting from the terminating

rules and following the rules from right to left, the set of all

non-terminals leading to terminals can be computed recursively.

Grammar Formalisms 5 LCFRS Normal Forms

Kallmeyer Sommersemester 2011

Eliminating useless rules (3)

1. (continued)

We can characterize this set NT with the following deduction

rules:

[A]
A(~α) → ε ∈ P

[A1], . . . , [Am]

[A]
A(~α) → A1(~α1) . . .Am(~αm) ∈ P

All rules that contain non-terminals in their right-hand side

that are not in this set are eliminated.

Grammar Formalisms 6 LCFRS Normal Forms

Kallmeyer Sommersemester 2011

Eliminating useless rules (4)

2. Then the unreachable rules need to be eliminated.

This is done starting from all S-rules and moving from

left-hand sides to right-hand sides. If the right-hand side

contains a predicate A, then all A-rules are reachable and so

on. Each time, the rules for the predicates in a right-hand side

are added.

We can characterize the set NS of non-terminals reachable

from S with the following deduction rules:

[S]

[A]

[A1], . . . , [Am]
A(~α) → A1(~α1) . . .Am(~αm) ∈ P

Rules whose left-hand side predicate is not in this set are

eliminated.

Grammar Formalisms 7 LCFRS Normal Forms

Kallmeyer Sommersemester 2011

Eliminating ε-rules (1)

[Boullier, 1998, Seki et al., 1991] show that the elimination of

ε-rules is possible in a way similar to CFG. We define that a rule is

an ε-rule if one of the arguments of the left-hand side is the empty

string ε.

Definition 1 A simple RCG is ε-free if it either contains no

ε-rules or there is exactly one rule S(ε) → ε and S does not appear

in any of the right-hand sides of the rules in the grammar.

Proposition 2 For every simple k-RCG G there exists an

equivalent ε-free simple k′-RCG G′ with k′ ≤ k.

Grammar Formalisms 8 LCFRS Normal Forms

Kallmeyer Sommersemester 2011

Eliminating ε-rules (2)

• First, we have to compute for all predicates A, all possibilities

to have empty ranges among the components of the yields.

• For this, we introduce vectors ~ι ∈ {0, 1}dim(A) and we generate

a set Nε of pairs (A,~ι) where ~ι signifies that it is possible for A

to have a tuple τ in its yield with τ(i) = ε if ~ι(i) = 0 and

τ(i) 6= ε if ~ι(i) 6= 0.

Example:

S(XY) → A(X, Y), A(a, ε) → ε, A(ε, a) → ε, A(a, b) → ε

Set of pairs characterizing possibilities for ε-components:

Nε = {(S, 1), (A, 10), (A, 01), (A, 11)}

Grammar Formalisms 9 LCFRS Normal Forms

Kallmeyer Sommersemester 2011

Eliminating ε-rules (3)

The set Nε is constructed recursively:

1. Nε = ∅.

2. For every rule A(x1, . . . , xdim(A)) → ε, add (A,~ι) to Nε with for

all 1 ≤ i ≤ dim(A): ~ι(i) = 0 if xi = ε, else ~ι(i) = 1.

3. Repeat until Nε does not change any more:

For every rule A(x1, . . . , xdim(A)) → A1(α1) . . .Ak(αk) and all

(A1,~ι1), . . . , (Ak,~ιk) ∈ Nε:

Calculate a vector (x′
1, . . . , x

′
dim(A)) from (x1, . . . , xdim(A)) by

replacing every variable that is the jth variable of Am in the

right-hand side such that ~ιm(j) = 0 with ε.

Then add (A,~ι) to Nε with for all 1 ≤ i ≤ dim(A): ~ι(i) = 0 if

x′
i = ε, else ~ι(i) = 1.

Grammar Formalisms 10 LCFRS Normal Forms

Kallmeyer Sommersemester 2011

Eliminating ε-rules (4)

Now that we have the set Nε we can obtain reduced rules from the

ones in the grammar where ε-arguments are left out.

Example:

S(XY) → A(X, Y), A(a, ε) → ε, A(ε, a) → ε, A(a, b) → ε

Nε = {(S, 1), (A, 10), (A, 01), (A, 11)}

Rules after ε-elimination ((A,~ι) is written A~ι):

S′(X) → S1(X), (S′ takes care of the case of ε ∈ L(G))

S1(X) → A10(X), A10(a) → ε,

S1(X) → A01(X), A01(b) → ε,

S1(XY) → A11(X, Y), A11(a, b) → ε

Grammar Formalisms 11 LCFRS Normal Forms

Kallmeyer Sommersemester 2011

Eliminating ε-rules (5)

To obtain the new rules Pε, we proceed as follows:

1. Pε = ∅

2. We pick a new start symbol S′ /∈ Nε.

If ε ∈ L(G), we add S′(ε) → ε to Pε.

If S1 ∈ Nε, we add S′(X) → S1(X) to Pε.

3. For every rule A(α) → A1(~x1) . . .Ak(~xk) ∈ P : add all

ε-reductions of this rule to Pε.

Grammar Formalisms 12 LCFRS Normal Forms

Kallmeyer Sommersemester 2011

Eliminating ε-rules (6)

The ε-reductions of A(α) → A1(~x1) . . .Ak(~xk) are obtained as

follows:

For all combinations of ~ι1, . . . ,~ιk such that A~ιi
i ∈ Nε for 1 ≤ i ≤ k:

(i) For all i, 1 ≤ i ≤ k: replace Ai in the rhs with A~ιi
i and for all j,

1 ≤ j ≤ dim(Ai): if ~ιi(j) = 0, then remove the jth component

of A~ιi
i from the rhs and delete the variable ~xi(j) in the lhs.

(ii) Let ~ι ∈ {0, 1}dim(A) be the vector with ~ι(i) = 0 iff the ith

component of A is empty in the rule obtained from (i). Remove

all ε-components in the lhs and replace A with A~ι.

Grammar Formalisms 13 LCFRS Normal Forms

Kallmeyer Sommersemester 2011

Ordered Simple RCG (1)

In general, in MCFG/LCFRS/simple RCG, when using a rule in a

derivation, the order of the components of its lhs in the input is not

necessarily the order of the components in the rule.

Example:

S(XY) → A(X, Y), A(aXb, cY d) → A(Y,X), A(e, f)→ ε.

String language:

{(ac)ne(db)n(ca)nf(bd)n |n ≥ 0}

∪{(ac)nafb(db)n(ca)nced(bd)n |n ≥ 0}

Grammar Formalisms 14 LCFRS Normal Forms

Kallmeyer Sommersemester 2011

Ordered Simple RCG (2)

Definition 2 (Ordered simple RCG) A simple RCG is ordered

if for every rule A(~α) → A1(~α1) . . .Ak(~αk) and every

Ai(~αi) = Ai(Y1, . . . , Ydim(Ai)) (1 ≤ i ≤ k), the order of the

components of ~αi in ~α is Y1, . . . , Ydim(Ai).

Proposition 3 For every simple k-RCG G there exists an

equivalent ordered simple k-RCG G′.

[Michaelis, 2001, Kracht, 2003, Kallmeyer, 2010]

In LCFRS terminology, this property is called monotone while in

MCFG terminology, it is called non-permuting.

Grammar Formalisms 15 LCFRS Normal Forms

Kallmeyer Sommersemester 2011

Ordered Simple RCG (3)

Idea of the transformation:

• We check for every rule whether the component order in one of

the right-hand side predicates A does not correspond to the

one in the left-hand side.

• If so, we add a new predicate that differs from A only with

respect to the order of the components. We replace A in the

rule with the new predicate with reordered components.

• Furthermore, we add a copy of every A-rule with A replaced in

the left-hand side by the new predicate and reordering of the

components.

We notate the permutations of components as vectors where the

ith element is the image of i. For a predicate A, id is the vector

〈1, 2, . . . , dim(A)〉.

Grammar Formalisms 16 LCFRS Normal Forms

Kallmeyer Sommersemester 2011

Ordered Simple RCG (4)

Transformation into an ordered simple RCG:

P ′ := P with all predicates A replaced with Aid;

N ′ := {Aid |A ∈ N};

repeat until P ′ does not change any more:

for all r = Ap(~α) → Ap1
1 (~α1) . . . A

pk
k (~αk) in P ′:

for all i, 1 ≤ i ≤ k:

if Api
i (~αi) = Api

i (Y1, . . . , Ydim(Ai)) and the order of the

Y1, . . . , Ydim(Ai) in ~α is p(Y1, . . . , Ydim(Ai))

where p is not the identity

then replace Api
i (~αi) in r with Api◦p

i (p(~αi))

if Api◦p

i /∈ N ′ then add Api◦p

i to N ′ and

for every Api
i -rule Api

i (~γ) → Γ ∈ P ′:

add Api◦p

i (p(~γ)) → Γ to P ′

Grammar Formalisms 17 LCFRS Normal Forms

Kallmeyer Sommersemester 2011

Ordered Simple RCG (5)

Consider again our example

P ′ = {S(XY) → A(X, Y), A(aXb, cY d) → A(Y,X), A(e, f)→ ε}.

• Problematic rule: A〈1,2〉(aXb, cY d) → A〈1,2〉(Y,X)

• Introduce new non-terminal A〈2,1〉 where 〈2, 1〉 is the

permutation that switches the two arguments.

Replace A〈1,2〉(aXb, cY d) → A〈1,2〉(Y,X) with

A〈1,2〉(aXb, cY d) → A〈2,1〉(X, Y).

• Add A〈2,1〉(f, e) → ε and A〈2,1〉(cY d, aXb) → A〈2,1〉(X, Y).

• Now, A〈2,1〉(cY d, aXb) → A〈2,1〉(X, Y) is problematic.

〈2, 1〉 ◦ 〈2, 1〉 = 〈1, 2〉, therefore we replace this rule with

A〈2,1〉(cY d, aXb) → A〈1,2〉(Y,X). A〈1,2〉 is no new

non-terminal, so no further rules are added.

Grammar Formalisms 18 LCFRS Normal Forms

Kallmeyer Sommersemester 2011

Ordered Simple RCG (6)

Result:

S〈1〉(XY) → A〈1,2〉(X, Y) A〈1,2〉(e, f) → ε

A〈1,2〉(aXb, cY d) → A〈2,1〉(X, Y) A〈2,1〉(f, e) → ε

A〈2,1〉(cY d, aXb) → A〈1,2〉(Y,X)

Note that in general, this transformation algorithm is exponential

in the size of the original grammar.

Grammar Formalisms 19 LCFRS Normal Forms

Kallmeyer Sommersemester 2011

Binarization (1)

In LCFRS terminology, the length of the right-hand side of a

production is called its rank. The rank of an LCFRS is given by the

maximal rank of its productions.

Proposition 4 For every simple RCG/LCFRS G there exists an

equivalent simple RCG/LCFRS G′ that is of rank 2.

Unfortunately, the fan-out of G′ might be higher than the fan-out

of G.

The transformation can be performed similarly to the CNF

transformation for CFG

[Hopcroft and Ullman, 1979, Grune and Jacobs, 2008].

Grammar Formalisms 20 LCFRS Normal Forms

Kallmeyer Sommersemester 2011

Binarization (2)

Example:

S(XY ZUVW) → A(X,U)B(Y, V)C(Z,W)

A(aX, aY) → A(X, Y) A(a, a) → ε

B(bX, bY) → B(X, Y) B(b, b) → ε

C(cX, cY) → C(X, Y) C(c, c) → ε

Equivalent binarized grammar:

S(XPUQ) → A(X,U)C1(P,Q) C1(Y Z, VW) → B(Y, V)C(Z,W)

A(aX, aY) → A(X, Y) A(a, a) → ε

B(bX, bY) → B(X, Y) B(b, b) → ε

C(cX, cY) → C(X, Y) C(c, c) → ε

Grammar Formalisms 21 LCFRS Normal Forms

Kallmeyer Sommersemester 2011

Binarization (3)

We define the reduction of a vector ~α1 ∈ [(T ∪ V)∗]k1 by a vector

~x ∈ (V ∗)k2 where all variables in ~x occur in ~α1 as follows:

Take all variables from ~α1 (in their order) that are not in ~x while

starting a new component in the resulting vector whenever an

element is, in ~α1, the first element of a component or preceded by a

variable from ~x or a terminal.

Examples:

1. 〈aX1, X2, bX3〉 reduced with 〈X2〉 yields 〈X1, X3〉.

2. 〈aX1X2bX3〉 reduced with 〈X2〉 yields 〈X1, X3〉 as well.

Grammar Formalisms 22 LCFRS Normal Forms

Kallmeyer Sommersemester 2011

Binarization (4)

Transformation into a simple RCG of rank 2:

for all r = A(~α) → A0(~α0) . . . Am(~αm) in P with m > 1:

remove r from P and pick new non-terminals C1, . . . , Cm−1

R := ∅

add the rule A(~α) → A0(~α0)C1(~γ1) to R where ~γ1

is obtained by reducing ~α with ~α0

for all i, 1 ≤ i ≤ m− 2:

add the rule Ci(~γi) → Ai(~αi)Ci+1(~γi+1) to R where ~γi+1

is obtained by reducing ~γi with ~αi

add the rule Cm−1(~γm−2) → Am−1(~αm−1)Am(~αm) to R

for every rule r′ ∈ R

replace rhs arguments of length > 1 with new variables

(in both sides) and add the result to P

Grammar Formalisms 23 LCFRS Normal Forms

Kallmeyer Sommersemester 2011

Binarization (5)

In our example, for the rule

S(XY ZUVW) → A(X,U)B(Y, V)C(Z,W), we obtain

R = { S(XY ZUVW) → A(X,U)C1(Y Z, VW),

C1(Y Z, VW) → B(Y, V)C(Z,W) }

Collapsing sequences of adjacent variables in the rhs leads to the

two rules

S(XPUQ) → A(X,U)C1(P,Q), C1(Y Z, VW) → B(Y, V)C(Z,W)

Grammar Formalisms 24 LCFRS Normal Forms

Kallmeyer Sommersemester 2011

References

[Boullier, 1998] Boullier, P. (1998). A Proposal for a Natural

Language Processing Syntactic Backbone. Technical Report

3342, INRIA.

[Grune and Jacobs, 2008] Grune, D. and Jacobs, C. (2008).

Parsing Techniques. A Practical Guide. Monographs in

Computer Science. Springer. Second Edition.

[Hopcroft and Ullman, 1979] Hopcroft, J. E. and Ullman, J. D.

(1979). Introduction to Automata Theory, Languages and

Computation. Addison Wesley.

[Kallmeyer, 2010] Kallmeyer, L. (2010). Parsing Beyond

Context-Free Grammars. Cognitive Technologies. Springer,

Heidelberg.

[Kracht, 2003] Kracht, M. (2003). The Mathematics of Language.

Grammar Formalisms 25 LCFRS Normal Forms

Kallmeyer Sommersemester 2011

Number 63 in Studies in Generative Grammar. Mouton de

Gruyter, Berlin.

[Michaelis, 2001] Michaelis, J. (2001). On Formal Properties of

Minimalist Grammars. PhD thesis, Potsdam University.

[Seki et al., 1991] Seki, H., Matsumura, T., Fujii, M., and Kasami,

T. (1991). On multiple context-free grammars. Theoretical

Computer Science, 88(2):191–229.

Grammar Formalisms 26 LCFRS Normal Forms

