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This paper presents the first efficient implementation of a weighted deductive CYK parser for

Probabilistic Linear Context-Free Rewriting Systems (PLCFRS). LCFRS, an extension of CFG,

can describe discontinuities in a straightforward way and is therefore a natural candidate to be

used for data-driven parsing. To speed up parsing, we use different context-summary estimates

of parse items, some of them allowing for A∗ parsing. We evaluate our parser with grammars

extracted from the German NeGra treebank. Our experiments show that data-driven LCFRS

parsing is feasible and yields output of competitive quality.

1. Introduction

1.1 Discontinuous Constituents

In the context of data-driven parsing, challenges always arise from discontinous con-
stituents since they call for formalisms which have a larger domain of locality than
context-free grammars. Discontinuities are particularly frequent in so-called free word
order languages such as German. A few examples are shown in (1). (1a) shows several
examples for discontinuous VPs while (1b) contains a discontinuous NP.

(1) a. Fronting:
Darüber muss nachgedacht werden. (NeGra)
Thereof must thought be
“One must think of that”

Ohne internationalen Schaden könne sich Bonn von dem Denkmal nicht
distanzieren, ... (TIGER)
Without international damage could itself Bonn from the monument not distance
“Bonn could not distance itself from the monument without international damage.”

Auch würden durch die Regelung nur “ständig neue Altfälle entstehen”. (TIGER)
Also would through the regulation only “constantly new old cases emerge”
“Apart from that, the regulation would only constantly produce new old cases.”

b. Extraposed relative clauses:
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. . . ob auf deren Gelände der Typ von Abstellanlage gebaut werden könne, der ...
(NeGra)
. . . whether on their terrain the type of parking facility built get could, which . . .
“. . . whether one could build on their premises the type of parking facility, which . . . ”

In the German NeGra treebank (Skut et al. 1997), approximately 25% of the sen-
tences display discontinuous constituents. This shows that they are no minor phe-
nomenon one could neglect but that it is important to find a way to adequately deal
with them.

Discontinuous constituents are by no means limited to languages such as German.
They also occur in languages with a rather fixed word order such as English, resulting
for instance from long-distance movements. (2) shows a few examples taken from
the Penn Treebank (PTB) (Marcus et al. 1994). (2a.) is a long extraction resulting in
a discontinuous S category while (2b.) displays a discontinuous NP arising from an
extraposed relative clause.

(2) a. Long Extractions:
Those chains include Bloomingdale’s, which Campeau recently said it will sell.

b. Extraposed relative clauses:
They sow a row of male-fertile plants nearby, which then pollinate the male-sterile
plants.

1.2 PCFG Parsing

Data-driven parsing has largely been dominated by Probabilistic Context-Free Gram-
mar (PCFG). The use of PCFG is tied to the annotation principles of popular treebanks
such as the Penn Treebank, which are used as a data source for grammar extraction.
Their annotation generally relies on the use of an annotation backbone based on
Context-Free Grammar (CFG), augmented with a mechanism that accounts for non-
local dependencies. In the PTB, e.g., trace nodes and co-indexation markers are used in
order to establish additional implicit edges in the tree beyond the overt phrase structure.
In contrast, some other treebanks, such as the German NeGra and TIGER treebanks,
give up the annotation backbone based on CFG and allow annotation with crossing
branches (Skut et al. 1997). Non-local dependencies can then be expressed directly by
grouping all dependent elements under a single node.

However, given the expressivity restrictions of PCFG, work on data-driven parsing
has mostly excluded non-local depdendencies. For treebanks with PTB-like annotation,
this amounts to discarding the co-indexation and the trace nodes. For treebanks like
NeGra and TIGER, tree transformations are applied which resolve the crossing branches
(see, e.g., Kübler (2005) and Boyd (2007)). Especially for those treebanks, such a trans-
formation is problematic, since it is non-reversible and implies information loss.

1.3 Extending the Domain of Locality

In the literature, different methods have been explored which allow for the use of non-
local information in data-driven parsing. We distinguish two classes of approaches. The
first class of approaches aims at using formalisms which produce trees without crossing
branches but provide a larger domain of locality than CFG, for instance through com-
plex labels (Hockenmaier 2003) or through the derivation mechanism (Chiang 2003).
The second class of approaches aims at producing trees which contain non-local infor-

2



Kallmeyer, Maier PLCFRS Parsing

CFG:

A

γ

LCFRS: •

A

• •
γ1 γ2 γ3

Figure 1
Different domains of locality

mation. Some methods realize the reconstruction of non-local information in a post- or
pre-processing step to PCFG parsing (Johnson 2002; Dienes 2003; Levy and Manning
2004). Other work uses formalisms which accommodate the direct encoding of non-
local information (Plaehn 2004; Levy 2005). This paper pursues the last approach.

Our work is motivated by the following recent developments. Linear Context-Free
Rewriting Systems (LCFRSs) (Vijay-Shanker, Weir, and Joshi 1987) have been estab-
lished as a candidate for modeling both discontinuous constituents and non-projective
dependency trees as they occur in treebanks (Maier and Søgaard 2008; Kuhlmann and
Satta 2009; Maier and Lichte 2009). LCFRSs are a natural extension of CFGs where the
non-terminals can span tuples of possibly non-adjacent strings (see Fig. 1). Since LCFRSs
allow for binarization and CYK chart parsing in a way similar to CFGs, PCFG tech-
niques, such as Best-First Parsing (Charniak and Caraballo 1998), Weighted Deductive
Parsing (Nederhof 2003) and A∗ parsing (Klein and Manning 2003a), can be transferred
to LCFRS. Finally, languages such as German have attracted the interest of the parsing
community due to the challenges arising from its frequent discontinuous constituents
(Kübler and Penn 2008; Seddah, Kübler, and Tsarfaty 2010). LCFRS, precisely because
of its extended locality, is a promising candidate for parsing languages such as German.

We bring together these developments by presenting a parser for probabilistic
LCFRS, continuing on the promising work of Levy (2005). To our knowledge, our parser
is the first for the entire class of PLCFRS which has successfully been used for data-
driven parsing. We have implemented a CYK parser and we present several methods
for context summary estimation of parse items. The estimates either act as figures-of-
merit in a best-first parsing context or as estimates for A∗ parsing. Last, a test on a
real-world-sized data set shows that our parser achieves competetive results.1

The paper is structured as follows. Section 2 introduces probabilistic LCFRS. The
sections 3 and 4 present the binarization algorithm, the parser and the outside estimates
which we use to speed up parsing. In section 5 we explain how to extract an LCFRS
from a treebank and we present ways of grammar refinement. Section 6 finally presents
evaluation results.

2. Probabilistic Linear Context-Free Rewriting Systems

2.1 Definition of PLCFRS

LCFRS (Vijay-Shanker, Weir, and Joshi 1987) is an extension of CFG in which the non-
terminals can span not only single strings but tuples of strings. We will notate LCFRS

1 Parts of the results presented in this paper have been presented earlier (Kallmeyer and Maier 2010; Maier
and Kallmeyer 2010; Maier 2010).
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A(ab, cd) → ε
A(aXb, cY d) → A(X,Y )

S(XY ) → A(X,Y )
Goal: [S, 〈〈0, n〉〉]

Figure 2
Sample LCFRS for {anbncndn |n ≥ 1}

with the syntax of simple Range Concatenation Grammars (SRCG) (Boullier 1998b), a
formalism that is equivalent to LCFRS. A third formalism that is equivalent to LCFRS is
Multiple Context-Free Grammar (MCFG) (Seki et al. 1991).

Definition 1 (LCFRS)
A Linear Context-Free Rewriting System (LCFRS) is a tuple 〈N, T, V, P, S〉 where

a) N is a finite set of non-terminals with a function dim: N → N that
determines the fan-out of each A ∈ N ;

b) T and V are disjoint finite sets of terminals and variables;

c) S ∈ N is the start symbol with dim(S) = 1;

d) P is a finite set of rules
A(α1, . . . , αdim(A)) → A1(X

(1)
1 , . . . , X

(1)

dim(A1)
)

· · ·Am(X
(m)
1 , . . . , X

(m)
dim(Am))

for m ≥ 0 where A,A1, . . . , Am ∈ N , X
(i)
j ∈ V for

1 ≤ i ≤ m, 1 ≤ j ≤ dim(Ai) and αi ∈ (T ∪ V )∗ for 1 ≤ i ≤ dim(A). For all
r ∈ P , it holds that every variable X occurring in r occurs exactly once in
the left-hand side and exactly once in the right-hand side of r.

A rewriting rule describes how the yield of the left-hand side non-terminal can be
computed from the yields of the right-hand side non-terminals. The rules A(ab, cd) → ε
and A(aXb, cY d) → A(X,Y ) from Fig. 2 for instance specify that 1. 〈ab, cd〉 is in the yield
of A and 2. one can compute a new tuple in the yield of A from an already existing one
by wrapping a and b around the first component and c and d around the second. A CFG
rule A → BC would be written A(XY ) → B(X)C(Y ) as an LCFRS rule.

Definition 2 (Yield, language)
Let G = 〈N, T, V, P, S〉 be a LCFRS.

1. For every A ∈ N , we define the yield of A, yield(A) as follows:
a) For every A(~α) → ε, ~α ∈ yield(A);

b) For every rule

A(α1, . . . , αdim(A)) → A1(X
(1)
1 , . . . , X

(1)
dim(A1)

) · · ·Am(X
(m)
1 , . . . , X

(m)
dim(Am))

and all ~τi ∈ yield(Ai) for 1 ≤ i ≤ m:

〈f(α1), . . . , f(αdim(A))〉 ∈ yield(A) where f is defined as follows:

(i) f(t) = t for all t ∈ T ,

(ii) f(X
(i)
j ) = ~τi(j) for all 1 ≤ i ≤ m, 1 ≤ j ≤ dim(Ai) and

(iii) f(xy) = f(x)f(y) for all x, y ∈ (T ∪ V )+.
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We call f the composition function of the rule.

c) Nothing else is in yield(A).

2. The language of G is then L(G) = {w | 〈w〉 ∈ yield(S)}.

As an example, consider again the LCFRS in Fig. 2. The last rule tells us that, given a
pair in the yield of A, we can obtain an element in the yield of S by concatenating the two
components. Consequently, the language generated by this grammar is {anbncndn |n ≥
1}.

The terms fan-out and rank and the properties of being monotone and ε-free will
be referred to later and are therefore introduced in the following definition. These terms
are taken form the LCFRS/MCFG terminology; the simple RCG term for fan-out is arity
while the property of being monotone is called ordered in the context of simple RCG.

Definition 3
Let G = 〈N, T, V, P, S〉 be a LCFRS.

1. The fan-out of G is the maximal fan-out of all non-terminals in G.

2. Furthermore, the right-hand side length of a rewriting rule r ∈ P is called
the rank of r and the maximal rank of all rules in P is called the rank of G.

3. G is monotone if for every r ∈ P and every right-hand side non-terminal A
in r and each pair X1, X2 of arguments of A in the right-hand side of r, X1

precedes X2 in the right-hand side iff X1 precedes X2 in the left-hand side.

4. A rule r ∈ P is called an ε-rule if one of the left-hand side components of r
is ε.
G is ε-free if it either contains no ε-rules or there is exactly one ε-rule
S(ε) → ε and S does not appear in any of the right-hand sides of the rules
in the grammar.

For every LCFRS there exists an equivalent LCFRS that is ε-free (Seki et al. 1991;
Boullier 1998a) and monotone (Michaelis 2001; Kracht 2003; Kallmeyer 2010).

The definition of a probabilistic LCFRS is a straightforward extension of the defini-
tion of PCFG and it follows (Levy 2005; Kato, Seki, and Kasami 2006):

Definition 4 (PLCFRS)
A probabilistic LCFRS (PLCFRS) is a tuple 〈N, T, V, P, S, p〉 such that 〈N, T, V, P, S〉 is a
LCFRS and p : P → [0..1] a function such that for all A ∈ N :

ΣA(~x)→~Φ∈P p(A(~x) →
~Φ) = 1

PLCFRS with non-terminals {S,A,B}, terminals {a} and start symbol S:
0.2 : S(X) → A(X) 0.8 : S(XY ) → B(X,Y )
0.7 : A(aX) → A(X) 0.3 : A(a) → ε
0.8 : B(aX, aY ) → B(X,Y ) 0.2 : B(a, a) → ε

Figure 3
Sample PLCFRS
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As an example, consider the PLCFRS in Fig. 3. This grammar simply generates a+.
Words with an even number of as and nested dependencies are more probable than
words with a right-linear dependency structure. For instance, the word aa receives the
two analyses in Fig. 4. The analysis (a) displaying nested dependencies has probability
0.16 while (b) (right-linear dependencies) has probability 0.042.

S

B

a a
(a)

S

A

a A

a
(b)

Figure 4
The two derivations of aa

3. Parsing PLCFRS

3.1 Binarization

Similarly to the transformation of a CFG into Chomsky Normal Form (CNF), we bina-
rize the LCFRS extracted from the treebank. The result is an LCFRS of rank 2. As in the
CFG case, in the transformation , we introduce a non-terminal for each right-hand side
longer than 2 and split the rule into two rules, using this new intermediate non-terminal.
This is repeated until all right-hand side are of length 2. The transformation algorithm
is inspired by Gómez-Rodríguez et al. (2009) and it is also specified in Kallmeyer (2010).

In order to give the algorithm for this transformation, we need the notion of a
reduction of a vector ~α ∈ [(T ∪ V )∗]i by a vector ~x ∈ V j where all variables in ~x occur
in ~α. A reduction is, roughly, obtained by keeping all variables in ~α that are not in ~x.
This is defined as follows:

Definition 5
Let 〈N, T, V, P, S〉 be a LCFRS, ~α ∈ [(T ∪ V )∗]i and ~x ∈ V j for some i, j ∈ IN.

Let w = ~α1$ . . . $~αi be the string obtained form concatenating the components of ~α,
separated by a new symbol $ /∈ (V ∪ T ).

Let w′ be the image of w under a homomorphism h defined as follows: h(a) = $ for
all a ∈ T , h(X) = $ for all X ∈ {~x1, . . . ~xj} and h(y) = y in all other cases.

Let y1, . . . ym ∈ V + such that w′ ∈ $∗y1$
+y2$

+ . . . $+ym$∗. Then the vector
〈y1, . . . ym〉 is the reduction of ~α by ~x.

For instance, 〈aX1, X2, bX3〉 reduced with 〈X2〉 yields 〈X1, X3〉 and 〈aX1X2bX3〉
reduced with 〈X2〉 yields 〈X1, X3〉 as well.

The binarization algorithm is given in Fig. 5. As already mentioned, it proceeds like
the one for CFGs in the sense that for right-hand sides longer than 2, we introduce a new
non-terminal that covers the right-hand side without the first element. Fig. 6 shows an
example. In this example, there is only one rule with a right-hand side longer than 2. In
a first step, we introduce the new non-terminals and rules that binarize the right-hand
side. This leads to the set R. In a second step, before adding the rules from R to the
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for all rules r = A(~α) → A0( ~α0) . . . Am( ~αm) in P with m > 1 do
remove r from P
R := ∅
pick new non-terminals C1, . . . , Cm−1

add the rule A(~α) → A0( ~α0)C1( ~γ1) to R where ~γ1 is obtained by reducing ~α with ~α0

for all i, 1 ≤ i ≤ m− 2 do
add the rule Ci(~γi) → Ai( ~αi)Ci+1( ~γi+1) to R where ~γi+1 is obtained by reducing ~γi with
~αi

end for
add the rule Cm−1( ~γm−2) → Am−1( ~αm−1)Am( ~αm) to R
for every rule r′ ∈ R do

replace right-hand side arguments of length > 1 with new variables (in both sides) and
add the result to P

end for
end for

Figure 5
Algorithm for binarizing an LCFRS

grammar, whenever a right-hand side argument contains several variables, these are
collapsed into a single new variable.

Original LCFRS:
S(XY ZUVW ) → A(X,U)B(Y, V )C(Z,W )
A(aX, aY ) → A(X,Y ) A(a,a) → ε
B(bX, bY ) → B(X,Y ) B(b, b) → ε
C(cX, cY ) → C(X,Y ) C(c, c) → ε

Rule with right-hand side of length > 2: S(XY ZUV W ) → A(X,U)B(Y, V )C(Z,W )
For this rule, we obtain
R = {S(XY ZUV W ) → A(X,U)C1(Y Z, V W ), C1(Y Z, V W ) → B(Y, V )C(Z,W )}

Equivalent binarized LCFRS:
S(XPUQ) → A(X,U)C1(P,Q) C1(Y Z, V W ) → B(Y, V )C(Z,W )
A(aX, aY ) → A(X,Y ) A(a,a) → ε
B(bX, bY ) → B(X,Y ) B(b, b) → ε
C(cX, cY ) → C(X,Y ) C(c, c) → ε

Figure 6
Sample binarization of an LCFRS

The equivalence of the original LCFRS and the binarized grammar is rather straight-
forward. Note however that the fan-out of the LCFRS can increase.

The binarization depicted in Fig. 5 is deterministic in the sense that for every rule
that needs to be binarized, we choose unique new non-terminals. Later, in section 5.3.1,
we will introduce additional factorization into the grammar rules that reduces the set of
new non-terminals.

3.2 The Parser

As already mentioned, we can assume without loss of generality that our grammars
are ε-free and monotone (the grammars that we extract from treebanks all have these
properties) and that they contain only binary and unary rules. Furthermore, we assume
POS tagging to be done before parsing. POS tags are non-terminals of fan-out 1. Finally,
according to our grammar extraction algorithm (see 5.1), a separation between two
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components always means that there is actually a non-empty gap in between them.
Consequently, two different components in a right-hand side can never be adjacent
in the same component of the left-hand side. The rules are then either of the form
A(a) → ε with A a POS tag and a ∈ T or of the form A(~x) → B(~x) or A(~α) → B(~x)C(~y)
where ~α ∈ (V +)dim(A), ~x ∈ V dim(B), ~y ∈ V dim(C), i.e., only the rules for POS tags contain
terminals in their left-hand sides.

During parsing we have to link the terminals and variables in our LCFRS rules to
portions of the input string. These can be characterized by their start and end positions.
Therefore we need the notions of ranges, range vectors and rule instantiations. A range
is a pair of indices that characterizes the span of a component within the input and a
range vector characterizes a tuple in the yield of a non-terminal. A rule instantiation
specifies the computation of an element from the lefthand side yield from elements of
in the yields of the right-hand side non-terminals based on the corresponding range
vectors.

Definition 6 (Range)
Let w ∈ T ∗ be a word with w = w1 . . . wn where wi ∈ T for 1 ≤ i ≤ n.

1. Pos(w) := {0, . . . , n}.

2. We call a pair 〈l, r〉 ∈ Pos(w) × Pos(w) with l ≤ r a range in w. Its yield
〈l, r〉(w) is the substring wl+1 . . . wr.

3. For two ranges ρ1 = 〈l1, r1〉, ρ2 = 〈l2, r2〉, if r1 = l2, then the concatenation
of ρ1 and ρ2 is ρ1 · ρ2 = 〈l1, r2〉; otherwise ρ1 · ρ2 is undefined.

4. A ~ρ ∈ (Pos(w) × Pos(w))k is a k-dimensional range vector for w iff
~ρ = 〈〈l1, r1〉, . . . , 〈lk, rk〉〉 where 〈li, ri〉 is a range in w for 1 ≤ i ≤ k.

We now define instantiations of rules with respect to a given input string. This defi-
nition follows the definition of clause instantiations from Boullier (2000). An instantiated
rule is a rule in which variables are consistently replaced by ranges. Since we need this
definition only for parsing our specific grammars, we restrict ourselves to ε-free rules
containing only variables.

Definition 7 (Rule instantiation)
Let G = (N, T, V, P, S) be an ε-free monotone LCFRS. For a given rule r = A(~α) →

A1( ~x1) · · ·Am( ~xm) ∈ P (0 < m) that does not contain any terminals,

1. an instantiation with respect to a string w = t1 . . . tn consists of a function
f : V → {〈i, j〉 | 1 ≤ i ≤ j ≤ |w|} such that for all x, y adjacent in one of the
elements of ~α, f(x) · f(y) must be defined; we then define
f(xy) = f(x) · f(y),

2. if f is an instantiation of r, then A(f(~α)) → A1(f( ~x1)) · · ·Am(f( ~xm)) is an
instantiated rule where f(〈x1, . . . , xk〉) = 〈f(x1), . . . , f(xk)〉.

We use a probabilistic version of the CYK parser from Seki et al. (1991). The algo-
rithm is formulated using the framework of parsing as deduction (Pereira and Warren
1983; Shieber, Schabes, and Pereira 1995; Sikkel 1997), resp. weighted deductive parsing
(Nederhof 2003). In this framework, a set of weighted items representing partial parsing
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Scan:
0 : [A, 〈〈i, i+ 1〉〉]

A POS tag of wi+1

Unary:
in : [B, ~ρ]

in+ log(p) : [A, ~ρ]
p : A(~α) → B(~α) ∈ P

Binary:
inB : [B, ~ρB], inC : [C, ~ρC ]
inB + inC + log(p) : [A, ~ρA]

p : A( ~ρA) → B( ~ρB)C( ~ρC)
is an instantiated rule

Goal: [S, 〈〈0, n〉〉]

Figure 7
Weighted CYK deduction system

results is characterized via a set of deduction rules, and certain items (the goal items)
represent successful parses.

During parsing, we have to match components in the rules we use with portions of
the input string. For a given input w, our items have the form [A, ~ρ] where A ∈ N and ~ρ
is a range vector that characterizes the span of A. Each item has a weight that encodes
its probability; we use the absolute value of log(p) where p is the probability.

The first rule (scan) tells us that the POS tags that we receive as inputs are given.
Consequently, they are axioms and their probability is 1 and their weight therefore 0.
The second rule, unary, is applied whenever we have found the right-hand side of an
instantiation of a unary rule. In our grammar, terminals only occur in rules with POS
tags and the grammar is ordered and ε-free. Therefore, the components of the yield of
the right-hand side non-terminal and of the left-hand side terminals are the same. The
rule binary applies an instantiated rule of rank 2. If we already have the two elements
of the right-hand side, we can infer the left-hand side element. In both cases, unary
and binary, the probability p of the new rule is multiplied with the probabilities of the
antecedent items (which amounts to summing up the antecedent weights and log(p)).

Our parser performs a weighted deductive parsing (Nederhof 2003), based on the
deduction system from Fig. 7. We use a chart C and an agenda A, both initially empty,
and we proceed as in Fig. 8. Since for all our deduction rules, the weight functions f
that compute the weight of a consequent item from the weights of the antecedent items
are monotone nonincreasing in each variable, the algorithm from Fig. 8 will always find
the best parse without the need of an exhaustive parsing. All new items that we deduce
involve at least one of the agenda items as an antecedent item. Therefore, whenever an
item is the best in the agenda, we can be sure that we will never find an item with a
better (i.e., higher) weight. Consequently, we can safely store this item in the chart and,
if it is a goal item, we have found the best parse.

As an example, consider the development of the agenda and the chart in Fig. 10
when parsing aa with the PLCFRS from Fig. 3, transformed into a PLCFRS with preter-
minals and binarization, i.e., with a POS tag Ta and a new binarization non-terminal B′.
The new PLCFRS is given in Fig. 9.

In this example, we find a first analysis for the input (a goal item) when combining
an A with span 〈〈0, 2〉〉 into an S. However, this S has a rather low probability and is
therefore not on top of the agenda. Later, when finding the better analysis, the weight of
the S item in the agenda is updated and then the goal item is the top agenda item and
therefore parsing has been successful.

Note that, so far, we have only presented the recognizer. In order to extend it to a
parser, we do the following: Whenever we generate a new item, we store it not only with
its weight but also with backpointers to its antecedent items. Furthermore, whenever
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add SCAN results to A
while A 6= ∅

remove best item x : I from A
add x : I to C
if I goal item
then stop and output true
else

for all y : I ′ deduced from x : I and items in C:
if there is no z with z : I ′ ∈ C ∪ A
then add y : I ′ to A
else if z : I ′ ∈ A for some z

then update weight of I ′ in A to max(y, z)

Figure 8
Weighted deductive parsing

PLCFRS with non-terminals {S,A,B, Ta}, terminals {a} and start symbol S:
0.2 : S(X) → A(X) 0.8 : S(XY ) → B(X,Y )
0.7 : A(XY ) → Ta(X)A(Y ) 0.3 : A(X) → Ta(X)
0.8 : B(ZX, Y ) → Ta(Z)B′(X,Y ) 1 : B′(X,UY ) → B(X,Y )Ta(U)
0.2 : B(X,Y ) → Ta(X)Ta(Y ) 1 : Ta(a) → ε

Figure 9
Sample binarized PLCFRS (with preterminal Ta)

chart agenda
0 : [Ta, 〈0, 1〉], 0 : [Ta, 〈1, 2〉]

0 : [Ta, 〈0, 1〉] 0 : [Ta, 〈1, 2〉], 0.5 : [A, 〈0, 1〉]
0 : [Ta, 〈0, 1〉], 0 : [Ta, 〈1, 2〉] 0.5 : [A, 〈0, 1〉], 0.5 : [A, 〈1, 2〉],

0.7 : [B, 〈0, 1〉, 〈1, 2〉]
0 : [Ta, 〈0, 1〉], 0 : [Ta, 〈1, 2〉], 0.5 : [A, 〈1, 2〉], 0.7 : [B, 〈0, 1〉, 〈1, 2〉],
0.5 : [A, 〈0, 1〉] 1.2 : [S, 〈0, 1〉]
0 : [Ta, 〈0, 1〉], 0 : [Ta, 〈1, 2〉], 0.65 : [A, 〈0, 2〉], 0.7 : [B, 〈0, 1〉, 〈1, 2〉],
0.5 : [A, 〈0, 1〉], 0.5 : [A, 〈1, 2〉] 1.2 : [S, 〈0, 1〉], 1.2 : [S, 〈1, 2〉]
0 : [Ta, 〈0, 1〉], 0 : [Ta, 〈1, 2〉], 0.7 : [B, 〈0, 1〉, 〈1, 2〉], 1.2 : [S, 〈0, 1〉],
0.5 : [A, 〈0, 1〉], 0.5 : [A, 〈1, 2〉], 1.2 : [S, 〈1, 2〉], 1.35 : [S, 〈0, 2〉]
0.65 : [A, 〈0, 2〉]
0 : [Ta, 〈0, 1〉], 0 : [Ta, 〈1, 2〉], 0.8 : [S, 〈0, 2〉], 1.2 : [S, 〈0, 1〉],
0.5 : [A, 〈0, 1〉], 0.5 : [A, 〈1, 2〉], 1.2 : [S, 〈1, 2〉]
0.65 : [A, 〈0, 2〉], 0.7 : [B, 〈0, 1〉, 〈1, 2〉]

Figure 10
Parsing of aa with the grammar from Fig. 3

we update the weight of an item in the agenda, we also update the backpointers. In
order to read off the best parse tree, we have to start from the goal item and follow the
backpointers.

4. Outside Estimates

So far, the weights we use give us only the inside probability of an item. In order to
speed up parsing, we add the estimate of the costs for completing the item into a goal
item to its weight. I.e., we add an estimate of the outside probabilities of the items (that
is, the absolute value of the logarithm of the estimate) to their weights in the agenda.

All our outside estimates are admissible (Klein and Manning 2003a) which means
that they never underestimate the actual outside probability of an item. In other words,

10
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POS tags:
0 : [A, 〈1〉]

A a POS tag Unary:
in : [B,~l]

in+ log(p) : [A,~l]
p : A(~α) → B(~α) ∈ P

Binary:
inB : [B,~lB ], inC : [C,~lC ]

inB + inC + log(p) : [A,~lA]
where p : A( ~αA) → B( ~αB)C( ~αC) ∈ P and the following holds: we define B(i) as

{1 ≤ j ≤ dim(B) | ~αB(j) occurs in ~αA(i)} and C(i) as {1 ≤ j ≤ dim(C) | ~αC(j) occurs in ~αA(i)}.

Then for all i, 1 ≤ i ≤ dim(A): ~lA(i) = Σj∈B(i)
~lB(j) + Σj∈C(i)

~lC(j).

Figure 11
Inside estimate

they are too optimistic about the costs of completing the item into an S item spanning
the entire input.

For the full SX estimate described in section 4.1 and the SX estimate with span and
sentence length in section 4.4, the monotonicity is guaranteed and we can do true A∗

parsing as described by Klein and Manning. The other estimates are not monotonic.
This means that it can happen that we deduce an item I2 from an item I1 where the
weight of I2 is greater than the weight of I1. The parser can therefore end up in a local
maximum that is not the global maximum we are searching for. In other words, those
estimates are only figures of merit (FOM).

All outside estimates are computed offline for a certain maximal sentence length
lenmax.

4.1 Full SX estimate

The full SX estimate, for a given sentence length n, is supposed to give the maximal
probability of completing a category X with a span ρ into an S with span 〈〈0, n〉〉.

For its computation, we need an estimate of the inside probability of a category
C with a span ρ, regardless of the actual terminals in our input. This inside estimate
is computed as shown in Fig. 11. Here, we do not need to consider the number of
terminals outside the span of C (to the left or right or in the gaps), they are not rele-
vant for the inside probability. Therefore the items have the form [A, 〈l1, . . . , ldim(A)〉],
where A is a non-terminal and li gives the length of its ith component. It holds that
Σ1≤i≤dim(A)li ≤ lenmax − dim(A) + 1 because our grammar extraction algorithm en-
sures that the different components in the yield of a non-terminal are never adjacent.
There is always at least one terminal in between two different components that does not
belong to the yield of the non-terminal.

The first rule in Fig. 11 tells us that POS tags always have a single component of
length 1, therefore this case has probability 1 (weight 0). The rules unary and binary
are roughly like the ones in the CYK parser, except that they combine items with length
information. The rule unary for instance tells us that if the log of the probability of

building [B,~l] is greater or equal to in and if there is a rule that allows to deduce an

A item from [B,~l] with probability p, then the log of the probability of [A,~l] is greater
or equal to in+ log(p). For each item, we record its maximal weight, i.e., its maximal
probability. The rule binary is slightly more complicated since we have to compute the
length vector of the left-hand side of the rule from the right-hand side length vectors.

A straight-forward extension of the CFG algorithm from Klein and Manning (2003a)
for computing the SX estimate is given in Fig. 12. Here, the items have the form

11
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Axiom :
0 : [S, 〈0, len, 0〉]

1 ≤ len ≤ lenmax Unary:
w : [A,~l]

w + log(p) : [B,~l]
p : A(~α) → B(~α) ∈ P

Binary-right:
w : [X,~lX ]

w + in(A,~l′A) + log(p) : [B,~lB ]

Binary-left:
w : [X,~lX ]

w + in(B,~l′B) + log(p) : [A,~lA]
where, for both binary rules, there is an instantiated rule p : X(~ρ) → A( ~ρA)B( ~ρB) such that

~lX = lout(ρ), ~lA = lout(ρA),~l
′
A = lin(ρA), ~lB = lout(ρB),~lB = lin(ρB).

Figure 12
Full SX estimate top-down

[A,~l] where the vector ~l tells us about the lengths of the string to the left of the first
component, the first component, the string in between the first and second component
and so on.

The algorithm proceeds top-down. The outside estimate of completing an S with
component length len and no terminals to the left or to the right of the S component
(item [S, 〈0, len, 0〉]) is 0. If we expand with a unary rule (unary), then the outside
estimate of the right-hand side item is greater or equal to the outside estimate of the
left-hand side item plus the log of the probability of the rule. In the case of binary rules,
we have to further add the inside estimate of the other daughter. For this, we need a
different length vector (without the lengths of the parts in between the components).
Therefore, for a given range vector ρ = 〈〈l1, r1〉, . . . , 〈lk, rk〉〉 and a sentence length n, we
distinguish between the inside length vector lin(ρ) = 〈r1 − l1, . . . , rk − lk〉 and the outside
length vector lout(ρ) = 〈l1, r1 − l1, l2 − r1, . . . , lk − rk−1, rk − lk, n− rk〉.

This algorithm has two major problems: Since it proceeds top-down, in the Binary
rules, we must compute all splits of the antecedent X span into the spans of A and
B which is very expensive. Furthermore, for a category A with a certain number of
terminals in the components and the gaps, we compute the lower part of the outside
estimate several times, namely for every combination of number of terminals to the left
and to the right (first and last element in the outside length vector). In order to avoid
these problems, we now abstract away from the lengths of the part to the left and the
right, modifying our items such as to allow a bottom-up strategy.

The idea is to compute the weights of items representing the derivations from a
certain lower C up to some A (C is a kind of “gap” in the yield of A) while summing up
the inside costs of off-spine nodes and the log of the probabilities of the corresponding
rules. We use items [A,C, ρA, ρC , shift ] where A,C ∈ N and ρA, ρC are range vectors,
both with a first component starting at position 0. The integer shift ≤ lenmax tells us
how many positions to the right the C span is shifted, compared to the starting position
of the A. ρA and ρC represent the spans of C and A while disregarding the number of
terminals to the left the right. I.e., only the lengths of the components and of the gaps are
encoded. This means in particular that the length n of the sentence does not play a role
here. The right boundary of the last range in the vectors is limited to lenmax. For any
i, 0 ≤ i ≤ lenmax, and any range vector ρ, we define shift(ρ, i) as the range vector one
obtains from adding i to all range boundaries in ρ and shift(ρ,−i) as the range vector
one obtains from substracting i from all boundaries in ρ.

12
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POS tags:
0 : [C,C, 〈0, 1〉, 〈0, 1〉, 0]

C a POS tag

Unary:
0 : [B,B, ρB, ρB, 0]

log(p) : [A,B, ρB, ρB , 0]
p : A(~α) → B(~α) ∈ P

Binary-right:
0 : [A,A, ρA, ρA, 0], 0 : [B,B, ρB, ρB, 0]
in(A, lin(ρA)) + log(p) : [X,B, ρX , ρB , i]

Binary-left:
0 : [A,A, ρA, ρA, 0], 0 : [B,B, ρB, ρB, 0]
in(B, lin(ρB)) + log(p) : [X,A, ρX , ρA, i]

where i is such that for shift(ρB, i) = ρ′B p : X(ρX) → A(ρA)B(ρ′B) is an instantiated rule.

Starting sub-trees with larger gaps:
w : [B,C, ρB, ρC , i]
0 : [B,B, ρB, ρB, 0]

Transitive closure of sub-tree combination:
w1 : [A,B, ρA, ρB, i], w2 : [B,C, ρB , ρC , j]

w1 + w2 : [A,C, ρA, ρC , i+ j]

Figure 13
Full SX estimate bottom-up

The weight of [A,C, ρA, ρC , i] estimates the log of the probability of completing a
C tree with yield ρC into an A tree with yield ρA such that, if the span of A starts at
position j, the span of C starts at position i+ j. Fig. 13 gives the computation. The

value of in(A,~l) is the inside estimate of [A,~l].
The SX-estimate for some predicate C with span ρ where i is the left boundary of

the first component of ρ and with sentence length n is then given by the maximal weight
of [S,C, 〈0, n〉, shift(−i, ρ), i].

4.2 SX with Left, Gaps, Right, Length

A problem of the previous estimate is that with a large number of non-terminals, the
computation of the estimate requires too much space. Our experiments have shown that
for treebank parsing where we have, after binarization and markovization, appr. 12,000
non-terminals, its computation is not feasible. We therefore turn to simpler estimates
with only a single non-terminal per item. We now estimate the outside probability of a
non-terminal A with a span of a length length (the sum of the lengths of all the compo-
nents of the span), with left terminals to the left of the first component, right terminals to
the right of the last component and gaps terminals in between the components of the A
span, i.e., filling the gaps. Our items have the form [X, len, left , right , gaps ] with X ∈ N ,
len + left + right + gaps ≤ lenmax, len ≥ dim(X), gaps ≥ dim(X)− 1.

Let us assume that, in the rule X(~α) → A( ~αA)B( ~αB), when looking at the vector ~α,
we have leftA variables for A-components preceding the first variable of a B component,
rightA variables for A-components following the last variable of a B component and
rightB variables for B-components following the last variable of a A component. (In our
grammars, the first left-hand side argument always starts with the first variable from A.)
Furthermore, we set gapsA = dim(A) − leftA − rightA and gapsB = dim(B)− rightB .

Fig. 14 gives the computation of the estimate. It proceeds top-down, as the com-
putation of the full SX estimate in Fig. 12, except that now the items are simpler.
The following side conditions must hold: For Binary-right to apply, the following con-
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Axiom :
0 : [S, len, 0, 0, 0]

1 ≤ len ≤ lenmax

Unary:
w : [X, len, l, r, g]

w + log(p) : [A, len, l, r, g]
p : X(~α) → A(~α) ∈ P

Binary-right:
w : [X, len, l, r, g]

w + in(A, len − lenB) + log(p) : [B, lenB , lB , rB, gB]

Binary-left:
w : [X, len, l, r, g]

w + in(B, len − lenA) + log(p) : [A, lenA, lA, rA, gA]
where, for both binary rules, p : X(~α) → A( ~αA)B( ~αB) ∈ P .

Figure 14
SX with length, left, right, gaps

POS tags:
0 : [A, 1]

A a POS tag Unary:
in : [B, l]

in+ log(p) : [A, l]
p : A(~α) → B(~α) ∈ P

Binary:
inB : [B, lB], inC : [C, lC ]

inB + inC + log(p) : [A, lB + lC ]
where either p : A( ~αA) → B( ~αB)C( ~αC) ∈ P or p : A( ~αA) → C( ~αC)B( ~αB) ∈ P .

Figure 15
Inside estimate with total span length

straints must be satisfied: a) len + l+ r + g = lenB + lB + rB + gB , b) lB ≥ l + leftA, c)
if rightA > 0, then rB ≥ r + rightA, else (rightA = 0), rB = r, d) gB ≥ gapsA. Similarly,
for Binary-left to apply, the following constraints must be satisfied: a) len + l + r + g =
lenA + lA + rA + gA, b) lA = l, c) if rightB > 0, then rA ≥ r + rightB , else (rightB = 0),
rA = r d) gA ≥ gapsB .

The value in(X, l) for a non-terminal X and a length l, 0 ≤ l ≤ lenmax is an estimate
of the probability of an X category with a span of length l. Its computation is specified
in Fig. 15.

The SX-estimate for a sentence length n and for some predicate C with a range

characterized by ~ρ = 〈〈l1, r1〉, . . . , 〈ldim(C), rdim(C)〉〉 where len = Σ
dim(C)
i=1 (ri − li) and

r = n− rdim(C) is then given by the maximal weight of the item [C, len , l1, r, n− len−
l1 − r].

4.3 SX with LR, Gaps, Length

In order to further decrease the space complexity of the computation of the outside
estimate, we can simplify the previous estimate by subsuming the two lengths left and
right in a single length lr . I.e., the items now have the form [X, len, lr , gaps ] with X ∈ N ,
len + lr + gaps ≤ lenmax, len ≥ dim(X), gaps ≥ dim(X)− 1.

The computation is given in Fig. 16. Again, we define leftA, gapsA, rightA and gapsB ,
rightB for a rule X(~α) → A( ~αA)B( ~αB) as above. The side conditions are as follows:
For Binary-right to apply, the following constraints must be satisfied: a) len + lr + g =
lenB + lrB + gB , b) lr < lrB , and c) gB ≥ gapsA. For Binary-left to apply, the following
must hold: a) len + lr + g = lenA + lrA + gA, b) if rightB = 0 then lr = lrA, else lr < lrA
and c) gA ≥ gapsB .

14
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Axiom :
0 : [S, len, 0, 0]

1 ≤ len ≤ lenmax

Unary:
w : [X, len, lr , g]

w + log(p) : [A, len, lr , g]
p : X(~α) → A(~α) ∈ P

Binary-right:
w : [X, len, lr , g]

w + in(A, len − lenB) + log(p) : [B, lenB , lrB, gB]
p : X(~α) → A( ~αA)B( ~αB) ∈ P

Binary-left:
w : [X, len, lr , g]

w + in(B, len − lenA) + log(p) : [A, lenA, lrA, gA]
p : X(~α) → A( ~αA)B( ~αB) ∈ P

Figure 16
SX estimate with length, LR, gaps

Axiom :
0 : [S, len, len]

1 ≤ len ≤ lenmax

Unary:
w : [X, lX , slen]

w + log(p) : [A, lX , slen ]
p : X(~α) → A(~α) ∈ P

Binary-right:
w : [X, lX , slen ]

w + in(A, lX − lB) + log(p) : [B, lB, slen ]
p : X(~α) → A( ~αA)B( ~αB) ∈ P

Binary-left:
w : [X, lX , slen ]

w + in(B, lX − lA) + log(p) : [A, lA, slen]
p : X(~α) → A( ~αA)B( ~αB) ∈ P

Figure 17
SX estimate with span and sentence length

Furthermore, in both Binary-left and Binary-right, we have limited lr in the conse-
quent item to the lr of the antecedent plus the length of the sister (lenB , resp. lenA). This
results in a further reduction of the number items while having only little effect on the
parsing results.

The SX-estimate for a sentence length n and for some predicate C with a span ~ρ =

〈〈l1, r1〉, . . . , 〈ldim(C), rdim(C)〉〉 where len = Σ
dim(C)
i=1 (ri − li) and r = n− rdim(C) is then

the maximal weight of [C, len , l1 + r, n− len− l1 − r].

4.4 SX with span and sentence length

We will now present a further simplification of the last estimate that records only the
span length and the length of the entire sentence. The items have then form [X, len , slen]
with X ∈ N , dim(X) ≤ len ≤ slen . The computation is given in Fig. 17. This last esti-
mate is actually monotonic and allows for true A∗ parsing.

The SX-estimate for a sentence length n and for some predicate C with a span ~ρ =

〈〈l1, r1〉, . . . , 〈ldim(C), rdim(C)〉〉 where len = Σ
dim(C)
i=1 (ri − li) is then the maximal weight

of [C, len , n].
In order to prove that this estimate allows for a monotonic weighted deductive

parsing and therefore guarantees that the best parse will be found, let us have a look
at the CYK deduction rules when being augmented with the estimate. Only Unary and
Binary are relevant since Scan does not have antecedent items. The two rules are now as
follows:
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Unary:
inB + outB : [B, ~ρ]

inB + log(p) + outA : [A, ~ρ]
p : A(~α) → B(~α) ∈ P

Binary:
inB + outB : [B, ~ρB], inC + outC : [C, ~ρC ]

inB + inC + log(p) + outA : [A, ~ρA]
p : A( ~ρA) → B( ~ρB)C( ~ρC)
is an instantiated rule

(Here, outA, outB and outC are the respective outside estimates of [A, ~ρA], [B, ~ρB]
and [C, ~ρC ].)

We have to show that for every rule, if this rule has an antecedent item with weight
w and a consequent item with weight w′, then w ≥ w′.

Let us start with Unary. To show: inB + outB ≥ inB + log(p) + outA. Because of the
Unary rule for computing the outside estimate and because of the unary production, we
obtain that, given the outside estimate outA of [A, ~ρ] the outside estimate outB of the
item [B, ~ρ] is at least outA + log(p), i.e., outB ≥ log(p) + outA. 2

Now let us consider the rule Binary. We treat only the relation between the weight
of the C antecedent item and the consequent. The treatment of the antecedent B is
symmetric. To show: inC + outC ≥ inB + inC + log(p) + outA. Assume that lB is the
length of the components of the B item and n is the sentence length. Then, because
of the Binary-right rule in the computation of the outside estimate and because of our
instantiated rule p : A( ~ρA) → B( ~ρB)C( ~ρC), we have that the outside estimate outC of
the C-item is at least outA + in(B, lB) + log(p). Furthermore, in(B, lB) ≥ inB . Conse-
quently outC ≥ inB + log(p) + outA. 2

4.5 Integration into the Parser

Before parsing, the outside estimates of all items up to a certain maximal sentence length
lenmax are precomputed. Then, when performing the weighted deductive parsing as
explained in section 3.2, whenever a new item is stored in the agenda, we add its outside
estimate to its weight.

Since the outside estimate is always greater or equal to the actual outside probabil-
ity, given the input, the weight of an item in the agenda is always greater or equal to the
log of the actual product of inside and outside probability of the item. In this sense, the
outside estimates given above are admissible.

Additionally, as already mentioned, note that the full SX estimate and the SX
estimate with span and sentence length are monotonic and allow for A∗ parsing. The
other two estimates, that are not monotonic, act as FOMs in a Best-First parsing context.
Consequently, they contribute to speeding up parsing but they decrease the quality of
the parsing output. For further evaluation details see section 6.

5. Grammars for Discontinous Constituents

5.1 Grammar Extraction

The algorithm we use for extracting a LCFRS from a constituency treebank with crossing
branches has originally been presented in Maier and Søgaard (2008). It interprets the
treebank trees as LCFRS derivation trees. Consider for instance the tree in Fig. 18.
The S node has two daughters, a VMFIN node and a VP node. This yields a rule
S→VP VMFIN. The VP is discontinuous with two components that wrap around the
yield of the VMFIN. Consequently, the LCFRS rule is S(XY Z) →VP(X,Z) VMFIN(Y ).

The extraction of an LCFRS from treebanks with crossing branches is almost imme-
diate, except for the fan-out of the non-terminal categories: In the treebank, we can have
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S

VP

VP

PROAV VMFIN VVPP VAINF
darüber muß nachgedacht werden
about it must thought be

“It must be thought about it”

Figure 18
A sample tree from NeGra

the same non-terminal with different arities, for instance a VP without a gap (arity 1),
a VP with a single gap (arity 2), and so on. In the corresponding LCFRS, we have to
distinguish these different non-terminals. mapping them to different predicates.

The algorithm first creates a so-called lexical clause P (a) → ε for each pre-terminal
P dominating some terminal a. Then for all other non-terminals A0 with the children
A1 · · ·Am, a clause A0 → A1 · · ·Am is created. The numbner of components of the
A1 · · ·Am is the number of discontinuous parts in their yields. The components of A0

are concatenations of variables that describe how the discontinuous parts of the yield of
A0 are obtained from the yields of its daughters.

More precisely, the non-terminals in our LCFRS are all Ak where A is a non-terminal
label in the treebank and k is a possible fan-out for A. For a given treebank tree 〈V,E, r, l〉
where V is the set of nodes, E ⊂ V × V the set of immediate dominance edges, r ∈
V the root node and l : V → N ∪ T the labeling function, the algorithm constructs the
following rules. Let us assume that w1, . . . , wn are the terminal labels of the leaves in
〈V,E, r〉 with a linear precedence relation wi ≺ wj for 1 ≤ i < j ≤ n. We introduce a
variable Xi for every wi, 1 ≤ i ≤ n.

r For every pair of nodes v1, v2 ∈ V with 〈v2, v2〉 ∈ E, l(v2) ∈ T , we add
l(v1)(l(v2)) → ε to the rules of the grammar. (We omit the fan-out subscript
here since pre-terminals are always of fan-out 1.)

r For every node v ∈ V with l(v) = A0 /∈ T such that there are exactly m
nodes v1, . . . , vm ∈ V (m ≥ 1) with 〈v, vi〉 ∈ E and l(vi) = Ai /∈ T for all
1 ≤ i ≤ m, we now create a rule

A0(x
(0)
1 , . . . , x

(0)
dim(A0)

)

→ A1(x
(1)
1 , . . . , x

(1)
dim(A1)

) . . . Am(x
(m)
1 , . . . , x

(m)
dim(Am))

where for the predicate Ai, 0 ≤ i ≤ m, the following must hold:

1. The concatenation of all arguments of Ai, x
(i)
1 . . . x

(i)
dim(Ai)

is the

concatenation of all X ∈ {Xi | 〈vi, v′i〉 ∈ E∗ with l(v′i) = wi} such
that Xi precedes Xj if i < j, and

2. a variable Xj with 1 ≤ j < n is the right boundary of an argument
of Ai if and only if Xj+1 /∈ {Xi | 〈vi, v′i〉 ∈ E∗ with l(v′i) = wi}, i.e.,
an argument boundary is introduced at each discontinuity.

As a further step, in this new rule, all right-hand side arguments of length
> 1 are replaced in both sides of the rule with a single new variable.
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PROAV(Darüber) → ε
VMFIN(muß) → ε

VVPP(nachgedacht) → ε
VAINF(werden) → ε

S1(X1X2X3) → VP2(X1,X3) VMFIN(X2)
VP2(X1,X2X3) → VP2(X1,X2) VAINF(X3)

VP2(X1,X2) → PROAV(X1) VVPP(X2)

Figure 19
LCFRS rules extracted from the tree in Fig. 18

Finally, all non-terminals A in the rule are equipped with an additional
subscript dim(A) which gives us the final non-terminal in our LCFRS.

For the tree in Fig. 18, the algorithm produces for instance the rules in Fig. 19.
The probabilities are then computed based on the frequencies of rules in the tree-

bank, using a Maximum Likelihood estimator (MLE). Such an estimation has been used
before (Levy 2005; Kato, Seki, and Kasami 2006).

5.2 Binarization

In LCFRS, in contrast to CFG, the order of the right-hand side elements of a rule does
not matter for the result of a derivation. Therefore, we can reorder the right-hand side
of a rule before binarizing it. We employ different re-orderings.

5.2.1 Using Head Rules. The first re-ordering results in a head-outward binarization
where the head is the lowest subtree and it is extended by adding first all sisters to
its left and then all sisters to its right. Consequently, before binarizing we reorder the
right-hand side of the rules extracted from the treebank such that first, all elements to
the right of the head are listed in reverse order, then all elements to the left of the head
in their original order and then the head itself. We also use a variant of this re-ordering
where we add first the sisters to the right and then the ones to the left. This is what Klein
and Manning (2003b) do.

We apply Collins-style head rules, based on the rules the Stanford parser (Klein
and Manning 2003c) uses for NeGra, to mark the respective head daughters of all non-
terminal nodes.

5.2.2 Minimizing Fan-Out and Arity. We furthermore use another binarization order
that yields a minimal arity and a minimal variable number per production and bina-
rization step. Gómez-Rodríguez et al. (2009) have shown how to obtain such an optimal
binarization for a given LCFRS.2 We assume that we are only considering partitions of
right-hand sides where one of the sets contains only a single non-terminal.

For a given rule r = A0( ~x0) → A1( ~x1) . . . Ak( ~xk), we define the characteristic string
s(c, Ai) of the Ai-reduction of c as follows: Concatenate the elements of ~x0, separated
with new additional symbols $ while replacing every component from ~xi with a $. We
then define the arity of the characteristic string, dim(s(c, Ai)), as the number of maximal
substrings x ∈ V + in s(Ai).

2 This version of the algorithm has first been published in Kallmeyer (2010).
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Tree in NeGra Format:

S

VP

NN VMFIN NN AV VAINF
das muß man jetzt machen
that must one now do

“One has to do that now”

Rule extracted for the S node: S(XYZU) → VP(X,U) VMFIN(Y ) NN(Z)
Reordering for head-outward binarization: S(XY ZU)→ NN(Z) VP(X,U) VMFIN(Y )
New rules resulting form binarizing this rule:

S(X)→ → Sbin1(X,Z) NN(Y )
Sbin2(X) → VMFIN(X) Sbin1(XY,Z)→ VP(X,Z) Sbin2(Y )

Tree after binarization:

S

Sbin1

VP

VPbin1

Sbin2 VPbin2

NN VMFIN NN AV VAINF

Figure 20
Sample head-outward binarization

Fig. 21 shows how in a first step, for a given rule r with right-hand side length > 2,
we determine the optimal candidate for binarization: On all right-hand side predicates
B we check for the maximal arity (given by dim(s(c, B))) and the number of variables
(dim(s(c, B)) + dim(B)) we would obtain when binarizing with this predicate. This
check provides the optimal candidate. In a second step we then perform the same
binarization as before, except that we use the optimal candidate now instead of the
first element of the right-hand side.

cand = 0
arity = number of variables in r
vars = number of variables in r
for all i = 0 to m do

cand -arity = dim(s(r,Ai));
if cand -arity < arity and dim(Ai) < arity then

arity = max({cand -arity , dim(Ai)});
vars = cand -arity + dim(Ai);
cand = i;

else if cand -arity ≤ arity , dim(Ai) ≤ arity and cand -arity + dim(Ai) < vars then
arity = max({cand -arity , dim(Ai)});
vars = cand -arity + dim(Ai);
cand = i

end if
end for

Figure 21
Optimized version of the binarization algorithm, determining binarization order

5.2.3 Unary rules. In all binarizations, we add additional unary rules when deriving
the head. This allows for a further factorization that has proved itself useful in parsing.
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S

XS
VP,NN

VP

XVP

ADV ,NN

XS

VMFIN ,VP
XVP

VAINF ,ADV

NN VMFIN NN ADV VAINF

Figure 22
Sample Markovization with v = 1, h = 2

Fig. 20 shows a sample binarization of a tree in the NeGra format. We do not insert
an additional unary rule at the highest new binarization non-terminal, since this was
neither beneficial for parsing times nor for the parsing results.

5.3 Incorporating Additional Context
5.3.1 Markovization. As already mentioned in section 3.1, a binarization that introduces
unique new non-terminals for every single rule that needs to be binarized, produces
a large amount of non-terminals and fails to capture certain generalizations. For this
reason, we introduce markovization (Collins 1999).

Markovization is achieved by introducing only a single new non-terminal for the
new rules introduced during binarization and adding vertical and horizontal context
from the original trees to each occurrence of this new non-terminal. As vertical context,
we add the first v labels on the path from the root node of the tree that we want to
binarize to the root of the entire treebank tree. The vertical context is collected during
grammar extraction and then taken into account during binarization of the rules. As
horizontal context, during binarization of a rule A(~α) → A0( ~α0) . . . Am( ~αm), for the new
non-terminal that comprises the right-hand side elements Ai . . . Am (for some 1 ≤ i ≤
m), we add the first h elements of Ai, Ai−1, . . . , A0.

Figure 22 shows an example of a markovization of the tree from Fig. 20 with v = 1
and h = 2. Here, the superscript is the vertical context and the subscript the horizontal
context of the new non-terminal X . Note that in this example, we have disregarded
the fan-out of the context categories. The VP for instance is actually a VP2 since it has
fan-out 2. For the context symbols, one can either use the categories from the original
treebank (without fan-out) or the ones from the LCFRS rules (with fan-out). We chose
the latter approach.

Note finally that the markovization is independent of the binarization strategy.

5.3.2 Further Category Splitting. Grammar annotation (i.e., manual enhancement of
annotation information through category splitting) has previously been successfully
employed in parsing German (Versley 2005). In order to see if such modifications can
have a beneficial effect in PLCFRS parsing as well, we perform different category splits
on the (unbinarized) NeGra constituency data.

We split the category S (“sentence”) into SRC (“relative clause”) and S (all other
categories S). Relative clauses mostly occur in a very specific context, namely as the
right part of an NP or a PP. This splitting should therefore speed up parsing and increase
precision. Furthermore, we distinguish NPs by their case. More precisely, to all nodes
with categories N, we append the grammatical function label to the category label. We
finally experiment with the combination of both splits.
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training test
number of sentences 16,502 1,833

av. sentence length 14.56 14.62
av. tree height 4.62 4.72

av. children per node 2.96 2.94
sentences without gaps 12,481 (75.63%) 1,361 (74.25%)

sent. with one gap 3,320 (20.12%) 387 (21.11%)
sent. with ≥ 2 gaps 701 (4.25%) 85 (4.64%)

max. gap degree 6 5
wellnested sentences 16,145 (97.84%) 1,792 (97.76%)
1-ill-nested sentences 346 (2.10%) 40 (2.24%)

≥ 2-ill-nested sentences 11 (0.07%) 1 (0.05%)

Table 1
NeGra: Properties of the data with crossing branches

6. Experiments

6.1 Data

Our data source is the NeGra treebank (Skut et al. 1997). We create two different data
sets for constituency parsing. For the first one, we start out with the unmodified NeGra
treebank and remove all sentences with a length of more than 30 words. We preprocess
the treebank following common practice (Kübler and Penn 2008), attaching all nodes
which are attached to the virtual root node to nodes within the tree such that, ideally,
no new crossing edges are created. In a second pass, we attach punctuation which comes
in pairs (parentheses, quotation marks) to the same nodes. For the second data set
we create a copy of the preprocessed first data set, in which we apply the usual tree
transformations for NeGra PCFG parsing, i.e., moving nodes to higher positions until
all crossing branches are resolved. The first 90% of both data sets are used as the training
set and the remaining 10% as test set.

Tab. 1 lists some properties of the training and test (resp. gold) sets with crossing
branches, namely the total number of sentences, the average sentence length, the av-
erage tree height, the height of a tree being the length of the longest of all paths from
the terminals to the root node, and the average number of children per node (excluding
terminals). Furthermore, gap degree and well-nestedness are listed (Maier and Lichte
2009).

Our findings correspond to those of Maier and Lichte. However, we have sentences
which are ≥ 2-ill-nested, while they only found 1-ill-nested sentences. This is due to
punctuation attachment; unlike us, Maier and Lichte removed the punctuation from the
trees.

6.2 Parser Implementation

We have implemented the CYK parser described in the previous section in a system
called rparse. It is available under the GNU General Public License 2.0 at http:
//www.sfs.uni-tuebingen.de/emmy/rparse. The implementation is realized in
Java.
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6.3 Evaluation

For the evaluation of the constituency parses, we use an EVALB-style metric. For a tree
over a string w, a single constituency is represented by a tuple 〈A, ~ρ〉 with A a node label
and ~ρ ∈ (Pos(w) × Pos(w))dim(A).3 We compute precision, recall and F1 based on these
tuples from gold and parsed test data. Despite the shortcomings of such a measure
(Rehbein and van Genabith 2007, e.g.), it still allows to some extent a comparison to
previous work in PCFG parsing. For a more detailed evaluation of NeGra PLCFRS
constituency parsing results, see Maier (2010).

6.4 Markovization and Binarization

We use the markovization settings v = 1 and h = 2 for all further experiments. The
setting which has been reported to yield the best results for PCFG parsing of NeGra,
v = 2 and h = 1 (Rafferty and Manning 2008), required a parsing time which was too
high.4

Tab. 2 contains the parsing results for the LCFRS data set using five different bina-
rizations: Headdriven and KM are the two head-outward binarizations which use a head
chosen on linguistic grounds (described in 5.2.1), L-to-R is another variant in which we
always choose the rightmost daughter of a node as its head.5 Optimal re-orders the left-
hand side such that the fan-out of the binarized rules is optimized (described in 5.2.2).
Finally, we also try a deterministic binarization (Deterministic) in which we binarize
strictly from left to right, i.e., we do not reorder the right-hand sides of productions,
and choose unique binarization labels.

Headdriven KM L-to-R Optimal Deterministic
LP 73.90 74.25 74.86 74.66 72.54
LR 74.55 74.75 74.98 75.12 71.93

LF1 74.22 74.49 74.92 74.89 72.23
UP 77.17 77.68 77.81 77.67 75.99
UR 77.85 78.20 77.93 78.15 75.35

UF1 77.51 77.94 77.87 77.91 75.67

Table 2
NeGra: LCFRS results for different binarizations

The results of the headdriven binarizations and the optimal binarization lie close
together, the results for the deterministic binarization are worse. This indicates that the
presence or absence of markovization has more impact on parsing results than the actual
binarization order. Furthermore, the non-optimal binarizations did not yield a binarized
grammar of a higher arity than the optimal binarization: For all five binarizations, the
arity was 7 (caused by a VP interrupted by punctuation).

3 Note that our metric is equivalent to the corresponding PCFG metric for dim(A) = 1.
4 Older versions of rparse contained a bug which kept the priority queue from being updated correctly, i.e.,

during an update, the corresponding node in the priority queue was not moved to its top, and therefore
the best parse was not guaranteed to be found; however, higher parsing speeds were achieved. The
current version of rparse implements the update operation correctly, using a Fibonacci queue to ensure
efficiency (Cormen et al. 2003).

5 The term head is not used in its proper linguistic sense here.
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Figure 23
NeGra: Items for LCFRS parsing (left-to-right): binarizations, baseline and category splits,
estimates

The different binarizations result in different numbers of items, and therefore allow
for different parsing speeds. In Fig. 23 a visual representation of the number of items
produced by all binarizations is shown (on the left). Note that when choosing the head
with head rules the number of items is almost not affected from the choice of adding
first the children to the left of the head and then to the right of the head or vice versa.
We will use the optimal binarization in all further experiments.

6.5 Baseline Evaluation and Category Splits

w/ category splits w/ category splits
LCFRS NP S NP ◦ S PCFG NP S NP ◦ S

LP 74.66 74.97 75.48 75.83 76.49 77.04 77.13 77.68
LR 75.12 75.36 75.89 76.16 76.07 76.92 76.79 77.74

LF1 74.89 75.16 75.68 76.00 76.28 76.98 76.96 77.71
UP 77.67 78.00 78.20 78.65 79.22 79.70 79.81 80.27
UR 78.15 78.41 78.63 78.99 78.79 79.58 79.46 80.33

UF1 77.91 78.20 78.41 78.82 79.00 79.64 79.64 80.30

Table 3
NeGra: LCFRS and PCFG baseline and category splits

Tab. 3 presents the constituency parsing results for the LCFRS data set (with cross-
ing branches) and the PCFG data set (without crossing branches), both with and without
the different category splits. We evaluate the parser output against the unmodified gold
data, i.e., before we evaluate the experiments with category splits, we replace all split
labels in the parser output with the corresponding original labels.

We see that the quality of the LCFRS parser output (which contains more infor-
mation than the output of a PCFG parser) does not lag far behind the quality of the
PCFG parsing results. With respect to the category splits, the results show furthermore
that category splitting is indeed beneficial for the quality of the PLCFRS parser output.
Interestingly, the S split is only beneficial for PLCFRS parsing. This is due to the fact
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that the characteristic context in which relative clauses occur disappears when remov-
ing the crossing branches (relative clauses are attached high). The gains in speed are
particularly visible for sentences with a length greater than 20 words (cf. the number of
produced items in Fig. 23 (middle)).

We take a closer look at the properties of the trees in the parser output for the LCFRS
set. 12 sentences had no parse, therefore, the parser output has 1,821 sentences. The
average tree height is 4.71, and the average number of children per node (excluding
terminals) is 2.92. These values are almost identical to the values for the gold data. As
for the gap degree, we get 1,394 sentences with no gaps, 359 with gap degree 1 and
69 with 2 or 3 gaps. Even though the difference is only small, one can see that fewer
gaps are preferred. This is not surprising, since constituents with many gaps are rare
events and therefore end up with a probability which is too low. 1,803 sentences in the
parser output are analyzed as well-nested, and the remaining 18 as 1-ill-nested. The fact
that almost the same amount of sentences is well-nested in the gold data and in the
parser output is misleading; only 3 of the ill-nested sentences from the gold data are
also analyzed as ill-nested by the parser. This also unsurprisingly indicates sparse data
problems.

6.6 Evaluating outside estimates

We compare the parser performance without estimates (OFF) with its performance with
the estimates described in 4.3 (LR) and 4.4 (LN). Unfortunately, the full estimates are
too expensive to compute both in terms of time and space. Unlike the LN estimate,
which allows for true A∗ parsing, the LR estimate lets the quality of the parsing results
deteriorate slightly – compared to the baseline, labeled F1 drops from 74.89 to 73.62
and unlabeled F1 drops from 77.91 to 76.89. Fig. 23 (right) shows the average number of
items produced by the parser for different sentence lengths. The results indicate that the
estimates have the desired effect of preventing unnecessary items from being produced.
This is reflected in a significantly lower parsing time.

7. Comparison to other Approaches

Our results are not directly comparable with PCFG parsing results, since LCFRS parsing
is a harder task. However, since the EVALB metric coincides for constituents without
crossing branches, in order to place our results in the context of previous work on
parsing NeGra, we cite some of the results from the literature which were obtained
using PCFG parsers6: Kübler (2005) (Tab. 1, plain PCFG) obtains 69.4, Dubey and Keller
(2003) (Tab. 5, sister-head PCFG model) 71.12, Rafferty and Manning (2008) (Tab. 2,
Stanford parser with markovization v = 2 and h = 1) 77.2, and Petrov and Klein (2007)
(Tab. 1, Berkeley parser) 80.1.

As for the works which aim at creating crossing branches, Plaehn (2004) obtains
73.16 Labeled F1 using Probabilistic Discontinuous Phrase Structure Grammar (DPSG),
albeit only on sentences with a length of up to 15 words. On those sentences, we obtain
84.59. Levy (2005) does not provide any evaluation results of his work. Very recently,
Evang and Kallmeyer (2011) followed up on our work. They transform the Penn Tree-
bank such that the trace nodes and co-indexation are converted in crossing branches

6 Note that these results were obtained on sentences with a length of ≤ 40 words and that those parser
possibly would deliver better results if tested on our test set.
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and parse them with the parser presented in this article, obtaining promising results.
van Cranenburgh, Scha, and Sangati (2011) have also followed up on our work. They
introduce an integration of our approach with Data-Oriented Parsing (DOP), producing
results which slightly exceed ours.

The comparison shows that our system delivers competitive results. Additionally,
when comparing this to PCFG parsing results, one has to keep in mind that LCFRS parse
trees contain non-context-free information about discontinuities. Therefore, a correct
parse with our grammar is actually better than a correct CFG parse, evaluated with
respect to a transformation of NeGra into a context-free treebank where precisely this
information gets lost.

8. Conclusion

We have presented the first efficient implementation of a weighted deductive CYK
parser for Probabilistic Linear Context-Free Rewriting Systems (PLCFRS), showing
that LCFRS indeed allows for data-driven parsing while modeling discontinuities in
a straightforward way. To speed up parsing, we have introduced different context-
summary estimates of parse items, some acting as Figures-Of-Merit, others allowing for
A∗ parsing. We have implemented the parser and we have evaluated it with grammars
extracted from the German NeGra treebank. Our experiments show that data-driven
LCFRS parsing is feasible and yields output of competitive quality.

There are two main directions for future work on this subject.

r On the symbolic side, LCFRS seems to offer more power than necessary.
By removing symbolic expressivity, a lower parsing complexity can be
achieved. One possibility is to refrain from using ill-nestedness. See to this
respect the parsing algorithm for well-nested LCFRS of Gómez-Rodríguez,
Kuhlmann, and Satta (2010). Nevertheless, ill-nestedness has been shown
to be a necessary tool for linguistic modeling (Chen-Main and Joshi 2010),
even though only about 3% of the treebank sentences are analyzed as
illnested. Our goal for future work is therefore to find a reduced variant of
illnestedness with which we get a lower parsing complexity.

r On the side of the probabilistic model, there are certain independence
assumptions made in our model that are too strong. The main problem in
this respect is that, due to the definition of LCFRS, we have to distinguish
between occurrences of the same category with different fan-outs. For
instance, VP1 (no gaps), VP2 (one gap), etc. are different non-terminals.
Consequently, the way they expand are considered independent from each
other. This, however, is of course not true. Furthermore, some of these
non-terminals are rather rare, we therefore have a sparse data problem
here. This leads to the idea to separate between the development of a
category (independent from its fan-out) and the fan-out and position of
gaps. We plan to integrate this into our probabilistic model in future work.
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