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Introduction

Goal: Induce CFGs from training data, for instance from tree-
banks.

Extend CFG to probabilistic CFG.

Compute the likelihood of parse trees and of sentences accord-
ing to the PCFG.

Compute the best parse tree for a given sentence (parsing).

Jurafsky and Martin (2009); Manning and Schütze (1999)
Some of the slides are due to Wolfgang Maier.
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Data-Driven Parsing (1)

Linguistic grammars can not only be created manually. An-
other way to obtain grammars is to interpret the syntactic
structures in a treebank as the derivations of a latent grammar
and to use an appopriate algorithm for grammar extraction.

One can also estimate occurrence probabilities for the rules
of a grammar. �ese can be used to determine the best parse,
resp. parses of a sentence.

Furthermore, rule probabilities can serve to speed up parsing.

Parsing with a probabilistic grammar obtained from a treebank
is called data-driven parsing.
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Data-Driven Parsing (2)

Sample tree from the Penn Treebank (PTB):
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Data-Driven Parsing (3)

Sample tree from the Penn Treebank (PTB):
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Data-Driven Parsing (4)

Sample tree from the German treebank Negra:

S

VP

VP

PROAV VMFIN VVPP VAINF

Darüber muss nachgedacht werden
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PCFG (1)

In most cases, probabilistic CFGs are used for data-driven parsing.

A Probabilistic Context-Free Grammar (PCFG) is a tuple
GP = (N , T , P, S, p) where (N , T , P, S) is a CFG and p : P → [0, 1]1 is
a function such that for all A ∈ N ,∑

A→α∈P
p(A→ α) = 1

p(A→ α) is the conditional probability p(A→ α | A)

1[0, 1] denotes {i ∈ R | 0 ≤ i ≤ 1}.
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PCFG (2)

Example:
.8 VP→ V NP
.2 VP→ VP PP
1 NP→ Det N
1 PP→ P NP
.1 N→ N PP

1 V→ sees
1 Det→ the
1 P→ with
.6 N→ man
.3 N→ telescope

Start symbol VP.
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PCFG (3)
Probability of a parse tree: product of the probabilities of the
rules used to generate the parse tree.

Probability of a category A spanning a string w: sum of the
probabilities of all parse trees with root label A and yield w.

t1 VP

PP

NP

N

telescope

Det

the

P

with

VP

NP

N

man

Det

the

V

sees

t2 VP

NP

N

PP

NP

N

telescope

Det

the

P

with

N

man

Det

the

V

sees

P(t1) = 0.6 · 0.8 · 0.2 · 0.3 = 0.0288
P(t2) = 0.6 · 0.8 · 0.1 · 0.3 = 0.0144

p(VP,sees the man with the telescope) = 0.0288 + 0.0144
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PCFG (4)

Probabilities of le�most derivations:

Let G = (N , T , P, S, p) be a PCFG, and let α, γ ∈ (N ∪ T)∗.

Let A → β ∈ P . �e probability of a le�most derivation
α

A→β⇒l γ is
p(α

A→β⇒l γ) = p(A→ β)

Let A1 → β1, . . . ,Am → βm ∈ P , m ∈ N. �e probability of a
le�most derivation α A1→β1⇒l · · ·

Am→βm⇒l γ is

p(α
A1→β1⇒l · · ·

Am→βm⇒l γ) =
m∏
i=1

p(Ai → βi)
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PCFG (5)

�e probability of le�most deriving γ from α, α ∗⇒l γ is de-
�ned as the sum over the probabilities of all le�most deriva-
tions of γ from α:

p(α
∗⇒l γ) =

k∑
i=1

m∏
j=1

p(Ai
j → βij )

where k ∈ N is the number of le�most derivations of γ from
α and m ∈ N is the derivation length of the ith derivation and
Ai
j → βij is the jth derivation step of the ith le�most derivation.

In the following, the subscript l is omi�ed assuming that derivations
are identi�ed with the corresponding le�most derivation for
probabilities.
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PCFG (6)

A PCFG is consistent if the sum of the probabilities of all sentences in
the language equals 1.

Example of an inconsistent PCFG G:

.4 S → A .6 S → B 1 A→ a 1 B→ B

Problem: probability mass disappears into in�nite derivations.∑
w∈L(G) p(w) = p(a) = 0.4
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Inside and Outside Probability (1)
Idea: given a word w = w1 · · ·wn and a category A, we consider the
case that A is part of a derivation tree for w such that A spans
wi · · ·wj .

A

wi wj

A

Inside probability of 〈A,wi · · ·wj〉: probability of a tree with
root A and leaves wi · · ·wj .
Outside probability of 〈A,wi · · ·wj〉: probability of a tree with
root S and leaves w1 · · ·wi−1Awj+1 · · ·wn.
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Inside and Outside Probability (2)
Let G be a PCFG and let w = w1 · · ·wn, n ∈ N, wi ∈ Σ for some
alphabet Σ, 1 ≤ i ≤ n, be an input string. Let 1 ≤ i ≤ j ≤ n and
A ∈ N .

1 �e probability of deriving wi · · ·wj from A is called inside
probability and de�ned as

p(A ∗⇒ wi · · ·wj)

2 �e probability of a deriving A, preceded by w1 · · ·wi−1 and
followed by wj+1 · · ·wn in a parse tree rooted with S is called
outside probability and de�ned as

p(S ∗⇒ w1 · · ·wi−1Awj+1 · · ·wn)

�e product of inside and outside probability gives the probability of a
parse tree for w containing a non-terminal A that spans wi · · ·wj .
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Inside and Outside Probability (3)

Inside algorithm for computing the inside probabilities of a PCFG
G = (N , T , P, S, p) given an input string w:

We assume all non-terminals A ∈ N to be continuously num-
bered from 1 to |N |.
We use a three-dimensional matrix chart α, where the �rst
dimension contains an index denoting a non-terminal, and the
second and third dimension contain indices denoting the start
and the end of a part of the input string.
Each cell [A, i, j] in α, wri�en as αA(i, j) contains the sum of
probabilities of all derivations A ∗⇒l wi · · ·wj .
We assume our grammar to be in Chomsky Normal Form. I.e.,
all productions have either the form A → a with a ∈ T or
A→ BC with B,C ∈ N .
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Inside and outside probability (4)
Idea of the inside computation: We �ll a |N | × |w| × |w| matrix α
where the �rst dimension is the id of a non-terminal, and the second
and third are the start and end indices of a span. αA,i,j gives the
probability of deriving wi . . .wj from A or, put di�erently, of a parse
tree with root label A and yield wi . . .wj :

αA,i,j = P(A ∗⇒ wi . . .wj|A)

Inside computation
1 for all 1 ≤ i ≤ |w| and A ∈ N :

if A→ wi ∈ P , then αA,i,i = p(A→ wi), else αA,i,i = 0
2 for all 1 ≤ i < j ≤ |w| and A ∈ N :
αA,i,j =

∑
A→BC∈P

∑j−1
k=i p(A→ BC)αB,i,kαC,k+1,j

We have in particular αS,1,|w| = P(w).
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Inside and outside probability (5)

Inside computation

0.3: S→ AS 0.6: S→ AX 0.1: S→ a 1: X→ SA 1: A→ a
input w = a4

j
4

(3.87 · 10−2,S),
(0.069,X)

(6.9 · 10−2,S),
(0.03,X)

(3·10−2,S), (0.1,X) (1,A), (0.1,S)

3
(6.9 · 10−2,S),
(0.03,X)

(3·10−2,S), (0.1,X) (1,A), (0.1,S)

2
(3·10−2,S), (0.1,X) (1,A), (0.1,S)

1
(1,A), (0.1,S)
1 2 3 4 i

P(aaaa) = αS,1,4 = 0.0387
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Inside and outside probability (6)
Outside algorithm: We �ll a |N | × |w| × |w| matrix β such that βA,i,j
gives the probability of deriving w1 . . .wi−1Awj+1 . . .w|w| from S or,
put di�erently, of deriving a tree with root label S and yield
w1 . . .wi−1Awj+1 . . .w|w|:

βA,i,j = P(S ∗⇒ w1 . . .wi−1Awj+1 . . .w|w||S)

We need the inside probabilities in order to compute the outside
probabilities.

Outside computation
1 βS,1,|w| = 1 and βA,1,|w| = 0 for all A 6= S
2 for all l with n > l ≥ 1 (starting with n− 1):

for all 1 ≤ i < |w| − l + 1 and A ∈ N :
j = i + l − 1
βA,i,j =

∑
B→AC∈P

∑n
k=j+1 p(B→ AC)βB,i,kαC,j+1,k

+
∑

B→CA∈P
∑i−1

k=1 p(B→ CA)βB,k,jαC,k,i−1
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Inside and outside probability (7)

Outside computation

0.3: S→ AS 0.6: S→ AX 0.1: S→ a 1: X→ SA 1: A→ a
input w = a3

j
3

(1,S), (0,A), (0,X) (0.3,S), (0,A),
(0.6,X)

(9 ·10−2,S), (0.18,X),
(6 · 10−2,A)

2
(0,S), (0,X), (0.03,A) (0.6,S), (0,X),

(9 · 10−3,A)
1

(0,S), (0,X),
(6.9 · 10−2,A)
1 2 3 i
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Inside and Outside Probability (8)

Probability of a sentence:

p(w1 · · ·wn) = αS(1, n)

p(w1 · · ·wn) =
∑

A βA(k, k)p(A→ wk) for any k, 1 ≤ k ≤ n

p(w1 · · ·wn|A
∗⇒ wi · · ·wj) = βA(i, j)αA(i, j)

Inside probability: calculated bo�om-up (CYK-style)
Outside probability: calculated top-down.
Sentence probability can be calculated in many ways.
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Parsing (1)

In PCFG parsing, we want to compute the most probable parse
tree (= most probable derivation) given an input sentence w.

�is means that we are disambiguating: Among several read-
ings, we search for the best.

Sometimes, the k best are searched for (k > 1).

During parsing, we must make sure that updates on proba-
bilities (because a be�er derivation has been found for a non-
terminal) do not require updates on other parts of the chart.⇒
the order should be such that an item is used within a deriva-
tion only when its �nal probability is reached.
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Parsing (2)

We can extend the symbolic CYK parser to a probabilistic one. Instead
of summing over all derivations (as in the computation of the inside
probability), we keep the best one.

Assume a three-dimensional chart C (non-terminal, start index,
length).

CA,i,l := 0 for all A, i, l
CA,i,1 := p if p : A→ wi ∈ P scan
for all l ∈ [1..n]:

for all i ∈ [1..n− l + 1]:
for every p : A→ B C:

for every l1 ∈ [1..l − 1]:
CA,i,l = max{CA,i,l, p · CB,i,l1 · CC,i+l1,l−l1} complete
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Parsing (3)

We extend this to a parser.

�e parser can also deal with unary productions A→ B.

Every chart �eld has three components, the probability, the
rule that has been used and, if the rule is binary, the length l1 of
the �rst righthand side element.

We assume that the grammar does not contain any loops A +⇒
A.
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Parsing (4)

CA,i,1 = 〈p,A→ wi,−〉 if p : A→ wi ∈ P scan
for all l ∈ [1..n] and for all i ∈ [1..n− l]:

for all p : A→ B C and for all l1 ∈ [1..l − 1]:
for all l1 ∈ [1..l − 1]:

if CB,i,l1 6= ∅ and CC,i+l1,l−l1 6= ∅ then:
pnew = p · CB,i,l1 [1] · CC,i+l1,l−l1 [1]
if CA,i,l == ∅ or CA,i,l[1] < pnew then:

CA,i,l = 〈pnew,A→ BC, l1〉 binary complete
repeat until C does not change any more:

for every p : A→ B:
if CB,i,l 6= ∅ then:

pnew = p · CB,i,l[1]
if CA,i,l == ∅ or CA,i,l[1] < pnew then:

CA,i,l = 〈pnew,A→ B,−〉 unary complete
return build tree(S,1,n)
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Parsing (5)

.1 VP→ VP NP

.6 VP→ V NP

.3 VP→ V

1 NP→ Det N
.3 V→ sees
.4 V→ comes

.3 V→ eats
1 Det→ this
.5 N→ morning

.5 N→ apple

Start symbol VP, input w = eats this morning

l
3 .0045, VP→ VP NP, 1
2 .5, NP→ Det N, 1

.09, VP→ V
1 .3, V→ eats 1, Det→ this .5, N→ morning

1 2 3 i
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Parsing (6)
.1 VP→ VP NP
.6 VP→ V NP
.3 VP→ V

1 NP→ Det N
.3 V→ sees
.4 V→ comes

.3 V→ eats
1 Det→ this
.5 N→ morning

.5 N→ apple

Start symbol VP, input w = eats this morning

l
3 .09, VP→ V NP, 1
2 .5, NP→ Det N, 1

.09, VP→ V
1 .3, V→ eats 1, Det→ this .5, N→ morning

1 2 3 i

(�e analysis of the VP gets revised since a be�er parse tree has been
found.)
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