Einfithrung in die Computerlinguistik
Probabilistic CFG

Laura Kallmeyer
Heinrich-Heine-Universitit Diisseldorf

Summer 2018

HEINRICH HEINE

UNIVERSITAT DUSSELDORF



Introduction

m Goal: Induce CFGs from training data, for instance from tree-
banks.

m Extend CFG to probabilistic CFG.

m Compute the likelihood of parse trees and of sentences accord-
ing to the PCFG.

m Compute the best parse tree for a given sentence (parsing).

Jurafsky and Martin (2009); Manning and Schiitze (1999)
Some of the slides are due to Wolfgang Maier.



Data-Driven Parsing (1)

m Linguistic grammars can not only be created manually. An-
other way to obtain grammars is to interpret the syntactic
structures in a treebank as the derivations of a latent grammar
and to use an appopriate algorithm for grammar extraction.

m One can also estimate occurrence probabilities for the rules
of a grammar. These can be used to determine the best parse,
resp. parses of a sentence.

m Furthermore, rule probabilities can serve to speed up parsing.

m Parsing with a probabilistic grammar obtained from a treebank
is called data-driven parsing.



Data-Driven Parsing (2)

Sample tree from the Penn Treebank (PTB):

What should | do *T* ?
WP MD PRP VB -NONE-



Data-Driven Parsing (3)

Sample tree from the Penn Treebank (PTB):

S
J\
VP

D

NP D)

|

Motorola ~ either  denied  *RNR* or would nt comment on *RNR* the  various charges
NNP cc VBN  -NONE- CcCc MD RB VB IN -NONE- DT RY) NNS



Data-Driven Parsing (4)

Sample tree from the German treebank Negra:

| | I
PROAV  VMFIN VVPP VAINF

Dariiber muss nachgedacht  werden
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PCFG (1)

In most cases, probabilistic CFGs are used for data-driven parsing.

A Probabilistic Context-Free Grammar (PCFQG) is a tuple
Gp = (N, T,P,S, p) where (N, T,P,S)isa CFGand p: P — [0,1]' is
a function such that for all A € N,

Z p(A—a)=1

A—a€P

p(A — «) is the conditional probability p(A — « | A)

'[0,1] denotes {ie R | 0 < i< 1}.



PCFG (2)

Example:

.8
2
1
1
1

VP — V NP
VP — VP PP
NP — Det N
PP — P NP
N — N PP

Start symbol VP.

V — sees

Det — the

P — with

N — man

N — telescope



PCFG (3)

m Probability of a parse tree: product of the probabilities of the
rules used to generate the parse tree.

m Probability of a category A spanning a string w: sum of the
probabilities of all parse trees with root label A and yield w.

t VP t VP
/\ /\
VP PP \% NP
N N |
\Y% NP P NP sees Det N
N N T
sees Det N with Det N the N PP
] I N
the man the telescope man P NP
RN
P(t;) = 0.6-0.8-0.2- 0.3 = 0.0288 with Det N

P(t;) = 0.6-0.8-0.1-0.3 = 0.0144 | |

the telescope

p(VP,sees the man with the telescope) = 0.0288 + 0.0144



PCFG (4)

Probabilities of leftmost derivations:

Let G= (N, T,P,S, p) be a PCFG, and let o,y € (N U T)*.

m Let A — [ € P.The probability of a leftmost derivation

A— .
o =] Y1s

pla B0 ) = p(a— B)

mLet Ay — By,...,An = Bm € P, m € N. The probability of a

. . Ar— An—Bm .
leftmost derivation « 1:>lﬁl e :>16 v is

Al 1 Am m n
pla S A0 = T o4 — B)

i=1
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PCFG (5)

m The probability of leftmost deriving vy from a, a =>; v is de-
fined as the sum over the probabilities of all leftmost deriva-
tions of v from «:

k m

pla=7)=> T pAl = 8)

i=1 j=1

where k € N is the number of leftmost derivations of v from
aand m € N is the derivation length of the ith derivation and
Aj’: — 6} is the jth derivation step of the ith leftmost derivation.

In the following, the subscript [ is omitted assuming that derivations
are identified with the corresponding leftmost derivation for
probabilities.



PCFG (6)

A PCFG is consistent if the sum of the probabilities of all sentences in
the language equals 1.

Example of an inconsistent PCFG G:
4S—A 65—+B 1A—a 1B—B
Problem: probability mass disappears into infinite derivations.

> wer(c) P(w) = p(a) = 0.4



Inside and Outside Probability (1)

Idea: given a word w = wy - - - w, and a category A, we consider the
case that A is part of a derivation tree for w such that A spans
Wi Wi

wi Wi

m Inside probability of (A, w; - - - wj): probability of a tree with
root A and leaves w; - - - w;.

m Outside probability of (A, w; - - - wj): probability of a tree with
root S and leaves w; - - - wi_1Awjq -+ - Wy



Inside and Outside Probability (2)

Let Gbe aPCFGandlet w = w; - - w,, n € N, w; € X for some
alphabet 3, 1 < i < n, be an input string. Let 1 < i < j < nand
A€ N.
@ The probability of deriving w; - - - wj from A is called inside
probability and defined as

@ The probability of a deriving A, preceded by wy - - - w;_; and
followed by wj1 - - - wy in a parse tree rooted with S is called
outside probability and defined as

p(S :*> Wyt Wi_lAWj+1 s Wn)

The product of inside and outside probability gives the probability of a
parse tree for w containing a non-terminal A that spans w; - - - w;.



Inside and Outside Probability (3)

Inside algorithm for computing the inside probabilities of a PCFG
G= (N, T,P,S,p) given an input string w:

m We assume all non-terminals A € N to be continuously num-
bered from 1 to |N|.

m We use a three-dimensional matrix chart «, where the first
dimension contains an index denoting a non-terminal, and the
second and third dimension contain indices denoting the start
and the end of a part of the input string.

m Each cell [A, i, /] in «, written as «4(i, j) contains the sum of
probabilities of all derivations A = wiee wj.
m We assume our grammar to be in Chomsky Normal Form. Le.,

all productions have either the form A — awitha € Tor
A — BCwith B,C € N.



Inside and outside probability (4)

Idea of the inside computation: We fill a [N| x |w| X |w| matrix o
where the first dimension is the id of a non-terminal, and the second
and third are the start and end indices of a span. a4 ;; gives the
probability of deriving w; ... w; from A or, put differently, of a parse
tree with root label A and yield w; ... w;:

CVA,I'J = P(A :*> Wi. .. W]‘A)

Inside computation
Q forall1 <i<|w|and A€ N:
if A— w; € P, thenay;; = p(A — w;), else g ;=0
Q forall1 <i<j<|w/and A € N:
0aij = Lacsneep Lk P(A = BO)apikoc ki1,

We have in particular ag ; |, = P(w).
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Inside and outside probability (5)

Inside computation

03:S—AS 06:S—AX 01:S—a 1:X—SA 1:A—a
input w = a*
J
4
(3.87 - 10729), | (6.9 10728), | (3-1072S), (0.1,X) | (1,A), (0.1,5)
(0.069,X) (0.03,X)
: 6.9 1072,8), | (3-1072,5), (0.1,X) | (1,A), (0.1,S)
(0.03,X)
2 (3-1072,8), (0.1,X) | (1,A), (0.1,S)
! (1,A), (0.1,S)
1 2 3 4 i

P(aaaa) = as 14 = 0.0387




Inside and outside probability (6)
Outside algorithm: We fill a [N| X |w| x |w| matrix /3 such that 84 ;;
gives the probability of deriving w; ... wi_1Awjq ... Wi| from S or,
put differently, of deriving a tree with root label S and yield
Wi Wi Awigg .. W

/BA,i,j = P(S :*> WwWi... Wi_lAWj+1 . W|W|’S)

We need the inside probabilities in order to compute the outside
probabilities.

Outside computation
Q Bsijw =1and By, =0forallA#S
@ for all [ with n > [ > 1 (starting with n — 1):
forall1 <i<|w|—1Il+1and A€ N:
j=i+l-1
Baij = D p—sacep ZZ:j—f—l p(B — AC)Bp i ke jy1,k
+ 5, cacp ker P(B— CA)Bpkjac ki



Inside and outside probability (7)

Outside computation

03:S—AS 06:S—AX 01:S—a 1:X—->SA 1:.A—a
input w = a*

J
119, 04, 0% | (039, 0.4), (9-10-25), (018X),
(0.6,X) (6-1072,A)
2 (0,S), (0,X), (0.03,A) | (0.6,S), (0,X),
(9-1073,A)
' 0), 0).
(6.9-1072,A)
1 2 3 i




Inside and Outside Probability (8)

Probability of a sentence:

m p(wy - wy) = as(l,n)
mp(wi-wy) =, Balk, k)p(A— wy) forany k, 1 < k<n

m p(wie o WalA S wie W) = Bali, jaali, j)

m Inside probability: calculated bottom-up (CYK-style)
m Outside probability: calculated top-down.

m Sentence probability can be calculated in many ways.
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Parsing (1)

m In PCFG parsing, we want to compute the most probable parse
tree (= most probable derivation) given an input sentence w.

m This means that we are disambiguating: Among several read-
ings, we search for the best.

m Sometimes, the k best are searched for (k > 1).

m During parsing, we must make sure that updates on proba-
bilities (because a better derivation has been found for a non-
terminal) do not require updates on other parts of the chart. =
the order should be such that an item is used within a deriva-
tion only when its final probability is reached.



Parsing (2)

We can extend the symbolic CYK parser to a probabilistic one. Instead
of summing over all derivations (as in the computation of the inside
probability), we keep the best one.

Assume a three-dimensional chart C (non-terminal, start index,
length).

Cai1:=0 for all A,il
Caip:=p if p:A—=w, P scan
for all le[l.n]:
for all iel.n—1+1]:
for every p:A— B C:
for every L €[1..1—-1]:
Cait = max{Ca,1,p- Cip - Ccitn,i—,} complete



Parsing (3)

We extend this to a parser.

m The parser can also deal with unary productions A — B.

m Every chart field has three components, the probability, the
rule that has been used and, if the rule is binary, the length [; of
the first righthand side element.

m We assume that the grammar does not contain any loops A =N
A.



Parsing (4)

Cai1=(pA—=>wy,—) if p:A—> weP scan
for all le(l..n] and for all i€ [l.n—1]:
for all p:A— B C and for all L e€[1.01—-1]:
for all L e[1.l—1]:
if Cgip # ¢ and Ce,ithy -1 7 ¢ then:
Prew = P - Ci[1] - Ce v, 11, [1]
if Cpii==0 or Ca;i[l] < ppew then:
Ca,il = (pnew,A— BC, ;) binary complete
repeat until C does not change any more:
for every p: A— B:
if Cp;;#0 then:
Prnew = P~ CB,i,l[l]
if Cai1y==0 or Ca;ill] < ppew then:
Ca,i1 = (Pnew, A — B, —) unary complete
return build_tree(S,1,n)



Parsing (5)

.1 VP — VPNP 1 NP —=DetN .3 V —eats

.6 VP — VNP 3V —sees 1  Det — this

3 VPV 4 'V — comes .5 N — morning
.5 N — apple

Start symbol VP, input w = eats this morning

3 || .0045, VP — VP NP, 1

2 .5, NP — Det N, 1

.09, VP -V
11 .3,V — eats 1, Det — this

.5, N — morning

|1 2

3



Parsing (6)

.1 VP — VPNP 1 NP — DetN .3V —eats

.6 VP — VNP .3V — sees 1 Det — this

3 VP—V .4 'V — comes .5 N — morning
.5 N — apple

Start symbol VP, input w = eats this morning

3| .09,VP - VNP, 1

2 .5, NP — DetN, 1
.09, VP -V
1| .3,V— eats 1, Det — this .5, N — morning
|1 2 3 i

(The analysis of the VP gets revised since a better parse tree has been
found.)
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