
Einführung in die Computerlinguistik
Probabilistic CFG

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Summer 2018

1 / 27

Introduction

Goal: Induce CFGs from training data, for instance from tree-
banks.

Extend CFG to probabilistic CFG.

Compute the likelihood of parse trees and of sentences accord-
ing to the PCFG.

Compute the best parse tree for a given sentence (parsing).

Jurafsky and Martin (2009); Manning and Schütze (1999)
Some of the slides are due to Wolfgang Maier.

2 / 27

Data-Driven Parsing (1)

Linguistic grammars can not only be created manually. An-
other way to obtain grammars is to interpret the syntactic
structures in a treebank as the derivations of a latent grammar
and to use an appopriate algorithm for grammar extraction.

One can also estimate occurrence probabilities for the rules
of a grammar. �ese can be used to determine the best parse,
resp. parses of a sentence.

Furthermore, rule probabilities can serve to speed up parsing.

Parsing with a probabilistic grammar obtained from a treebank
is called data-driven parsing.

3 / 27

Data-Driven Parsing (2)

Sample tree from the Penn Treebank (PTB):

What

WP

should

MD

I

PRP

do

VB

T

-NONE-

?

.

WHNP NP NP

VP

SBJ

SQ

SBARQ

T

4 / 27

Data-Driven Parsing (3)

Sample tree from the Penn Treebank (PTB):

Motorola

NNP

either

CC

denied

VBN

RNR

-NONE-

or

CC

would

MD

n't

RB

comment

VB

on

IN

RNR

-NONE-

the

DT

various

JJ

charges

NNS

.

.

NP NP

VP

NP

PP

CLR

VP

VP

NP

VP

VP

SBJ

S

RNR *RNR*

5 / 27

Data-Driven Parsing (4)

Sample tree from the German treebank Negra:

S

VP

VP

PROAV VMFIN VVPP VAINF

Darüber muss nachgedacht werden

6 / 27

PCFG (1)

In most cases, probabilistic CFGs are used for data-driven parsing.

A Probabilistic Context-Free Grammar (PCFG) is a tuple
GP = (N , T , P, S, p) where (N , T , P, S) is a CFG and p : P → [0, 1]1 is
a function such that for all A ∈ N ,∑

A→α∈P
p(A→ α) = 1

p(A→ α) is the conditional probability p(A→ α | A)

1[0, 1] denotes {i ∈ R | 0 ≤ i ≤ 1}.
7 / 27

PCFG (2)

Example:
.8 VP→ V NP
.2 VP→ VP PP
1 NP→ Det N
1 PP→ P NP
.1 N→ N PP

1 V→ sees
1 Det→ the
1 P→ with
.6 N→ man
.3 N→ telescope

Start symbol VP.

8 / 27

PCFG (3)
Probability of a parse tree: product of the probabilities of the
rules used to generate the parse tree.

Probability of a category A spanning a string w: sum of the
probabilities of all parse trees with root label A and yield w.

t1 VP

PP

NP

N

telescope

Det

the

P

with

VP

NP

N

man

Det

the

V

sees

t2 VP

NP

N

PP

NP

N

telescope

Det

the

P

with

N

man

Det

the

V

sees

P(t1) = 0.6 · 0.8 · 0.2 · 0.3 = 0.0288
P(t2) = 0.6 · 0.8 · 0.1 · 0.3 = 0.0144

p(VP,sees the man with the telescope) = 0.0288 + 0.0144
9 / 27

PCFG (4)

Probabilities of le�most derivations:

Let G = (N , T , P, S, p) be a PCFG, and let α, γ ∈ (N ∪ T)∗.

Let A → β ∈ P . �e probability of a le�most derivation
α

A→β⇒l γ is
p(α

A→β⇒l γ) = p(A→ β)

Let A1 → β1, . . . ,Am → βm ∈ P , m ∈ N. �e probability of a
le�most derivation α A1→β1⇒l · · ·

Am→βm⇒l γ is

p(α
A1→β1⇒l · · ·

Am→βm⇒l γ) =
m∏
i=1

p(Ai → βi)

10 / 27

PCFG (5)

�e probability of le�most deriving γ from α, α ∗⇒l γ is de-
�ned as the sum over the probabilities of all le�most deriva-
tions of γ from α:

p(α
∗⇒l γ) =

k∑
i=1

m∏
j=1

p(Ai
j → βij)

where k ∈ N is the number of le�most derivations of γ from
α and m ∈ N is the derivation length of the ith derivation and
Ai
j → βij is the jth derivation step of the ith le�most derivation.

In the following, the subscript l is omi�ed assuming that derivations
are identi�ed with the corresponding le�most derivation for
probabilities.

11 / 27

PCFG (6)

A PCFG is consistent if the sum of the probabilities of all sentences in
the language equals 1.

Example of an inconsistent PCFG G:

.4 S → A .6 S → B 1 A→ a 1 B→ B

Problem: probability mass disappears into in�nite derivations.∑
w∈L(G) p(w) = p(a) = 0.4

12 / 27

Inside and Outside Probability (1)
Idea: given a word w = w1 · · ·wn and a category A, we consider the
case that A is part of a derivation tree for w such that A spans
wi · · ·wj .

A

wi wj

A

Inside probability of 〈A,wi · · ·wj〉: probability of a tree with
root A and leaves wi · · ·wj .
Outside probability of 〈A,wi · · ·wj〉: probability of a tree with
root S and leaves w1 · · ·wi−1Awj+1 · · ·wn.

13 / 27

Inside and Outside Probability (2)
Let G be a PCFG and let w = w1 · · ·wn, n ∈ N, wi ∈ Σ for some
alphabet Σ, 1 ≤ i ≤ n, be an input string. Let 1 ≤ i ≤ j ≤ n and
A ∈ N .

1 �e probability of deriving wi · · ·wj from A is called inside
probability and de�ned as

p(A ∗⇒ wi · · ·wj)

2 �e probability of a deriving A, preceded by w1 · · ·wi−1 and
followed by wj+1 · · ·wn in a parse tree rooted with S is called
outside probability and de�ned as

p(S ∗⇒ w1 · · ·wi−1Awj+1 · · ·wn)

�e product of inside and outside probability gives the probability of a
parse tree for w containing a non-terminal A that spans wi · · ·wj .

14 / 27

Inside and Outside Probability (3)

Inside algorithm for computing the inside probabilities of a PCFG
G = (N , T , P, S, p) given an input string w:

We assume all non-terminals A ∈ N to be continuously num-
bered from 1 to |N |.
We use a three-dimensional matrix chart α, where the �rst
dimension contains an index denoting a non-terminal, and the
second and third dimension contain indices denoting the start
and the end of a part of the input string.
Each cell [A, i, j] in α, wri�en as αA(i, j) contains the sum of
probabilities of all derivations A ∗⇒l wi · · ·wj .
We assume our grammar to be in Chomsky Normal Form. I.e.,
all productions have either the form A → a with a ∈ T or
A→ BC with B,C ∈ N .

15 / 27

Inside and outside probability (4)
Idea of the inside computation: We �ll a |N | × |w| × |w| matrix α
where the �rst dimension is the id of a non-terminal, and the second
and third are the start and end indices of a span. αA,i,j gives the
probability of deriving wi . . .wj from A or, put di�erently, of a parse
tree with root label A and yield wi . . .wj :

αA,i,j = P(A ∗⇒ wi . . .wj|A)

Inside computation
1 for all 1 ≤ i ≤ |w| and A ∈ N :

if A→ wi ∈ P , then αA,i,i = p(A→ wi), else αA,i,i = 0
2 for all 1 ≤ i < j ≤ |w| and A ∈ N :
αA,i,j =

∑
A→BC∈P

∑j−1
k=i p(A→ BC)αB,i,kαC,k+1,j

We have in particular αS,1,|w| = P(w).

16 / 27

Inside and outside probability (5)

Inside computation

0.3: S→ AS 0.6: S→ AX 0.1: S→ a 1: X→ SA 1: A→ a
input w = a4

j
4

(3.87 · 10−2,S),
(0.069,X)

(6.9 · 10−2,S),
(0.03,X)

(3·10−2,S), (0.1,X) (1,A), (0.1,S)

3
(6.9 · 10−2,S),
(0.03,X)

(3·10−2,S), (0.1,X) (1,A), (0.1,S)

2
(3·10−2,S), (0.1,X) (1,A), (0.1,S)

1
(1,A), (0.1,S)
1 2 3 4 i

P(aaaa) = αS,1,4 = 0.0387

17 / 27

Inside and outside probability (6)
Outside algorithm: We �ll a |N | × |w| × |w| matrix β such that βA,i,j
gives the probability of deriving w1 . . .wi−1Awj+1 . . .w|w| from S or,
put di�erently, of deriving a tree with root label S and yield
w1 . . .wi−1Awj+1 . . .w|w|:

βA,i,j = P(S ∗⇒ w1 . . .wi−1Awj+1 . . .w|w||S)

We need the inside probabilities in order to compute the outside
probabilities.

Outside computation
1 βS,1,|w| = 1 and βA,1,|w| = 0 for all A 6= S
2 for all l with n > l ≥ 1 (starting with n− 1):

for all 1 ≤ i < |w| − l + 1 and A ∈ N :
j = i + l − 1
βA,i,j =

∑
B→AC∈P

∑n
k=j+1 p(B→ AC)βB,i,kαC,j+1,k

+
∑

B→CA∈P
∑i−1

k=1 p(B→ CA)βB,k,jαC,k,i−1

18 / 27

Inside and outside probability (7)

Outside computation

0.3: S→ AS 0.6: S→ AX 0.1: S→ a 1: X→ SA 1: A→ a
input w = a3

j
3

(1,S), (0,A), (0,X) (0.3,S), (0,A),
(0.6,X)

(9 ·10−2,S), (0.18,X),
(6 · 10−2,A)

2
(0,S), (0,X), (0.03,A) (0.6,S), (0,X),

(9 · 10−3,A)
1

(0,S), (0,X),
(6.9 · 10−2,A)
1 2 3 i

19 / 27

Inside and Outside Probability (8)

Probability of a sentence:

p(w1 · · ·wn) = αS(1, n)

p(w1 · · ·wn) =
∑

A βA(k, k)p(A→ wk) for any k, 1 ≤ k ≤ n

p(w1 · · ·wn|A
∗⇒ wi · · ·wj) = βA(i, j)αA(i, j)

Inside probability: calculated bo�om-up (CYK-style)
Outside probability: calculated top-down.
Sentence probability can be calculated in many ways.

20 / 27

Parsing (1)

In PCFG parsing, we want to compute the most probable parse
tree (= most probable derivation) given an input sentence w.

�is means that we are disambiguating: Among several read-
ings, we search for the best.

Sometimes, the k best are searched for (k > 1).

During parsing, we must make sure that updates on proba-
bilities (because a be�er derivation has been found for a non-
terminal) do not require updates on other parts of the chart.⇒
the order should be such that an item is used within a deriva-
tion only when its �nal probability is reached.

21 / 27

Parsing (2)

We can extend the symbolic CYK parser to a probabilistic one. Instead
of summing over all derivations (as in the computation of the inside
probability), we keep the best one.

Assume a three-dimensional chart C (non-terminal, start index,
length).

CA,i,l := 0 for all A, i, l
CA,i,1 := p if p : A→ wi ∈ P scan
for all l ∈ [1..n]:

for all i ∈ [1..n− l + 1]:
for every p : A→ B C:

for every l1 ∈ [1..l − 1]:
CA,i,l = max{CA,i,l, p · CB,i,l1 · CC,i+l1,l−l1} complete

22 / 27

Parsing (3)

We extend this to a parser.

�e parser can also deal with unary productions A→ B.

Every chart �eld has three components, the probability, the
rule that has been used and, if the rule is binary, the length l1 of
the �rst righthand side element.

We assume that the grammar does not contain any loops A +⇒
A.

23 / 27

Parsing (4)

CA,i,1 = 〈p,A→ wi,−〉 if p : A→ wi ∈ P scan
for all l ∈ [1..n] and for all i ∈ [1..n− l]:

for all p : A→ B C and for all l1 ∈ [1..l − 1]:
for all l1 ∈ [1..l − 1]:

if CB,i,l1 6= ∅ and CC,i+l1,l−l1 6= ∅ then:
pnew = p · CB,i,l1 [1] · CC,i+l1,l−l1 [1]
if CA,i,l == ∅ or CA,i,l[1] < pnew then:

CA,i,l = 〈pnew,A→ BC, l1〉 binary complete
repeat until C does not change any more:

for every p : A→ B:
if CB,i,l 6= ∅ then:

pnew = p · CB,i,l[1]
if CA,i,l == ∅ or CA,i,l[1] < pnew then:

CA,i,l = 〈pnew,A→ B,−〉 unary complete
return build tree(S,1,n)

24 / 27

Parsing (5)

.1 VP→ VP NP

.6 VP→ V NP

.3 VP→ V

1 NP→ Det N
.3 V→ sees
.4 V→ comes

.3 V→ eats
1 Det→ this
.5 N→ morning

.5 N→ apple

Start symbol VP, input w = eats this morning

l
3 .0045, VP→ VP NP, 1
2 .5, NP→ Det N, 1

.09, VP→ V
1 .3, V→ eats 1, Det→ this .5, N→ morning

1 2 3 i

25 / 27

Parsing (6)
.1 VP→ VP NP
.6 VP→ V NP
.3 VP→ V

1 NP→ Det N
.3 V→ sees
.4 V→ comes

.3 V→ eats
1 Det→ this
.5 N→ morning

.5 N→ apple

Start symbol VP, input w = eats this morning

l
3 .09, VP→ V NP, 1
2 .5, NP→ Det N, 1

.09, VP→ V
1 .3, V→ eats 1, Det→ this .5, N→ morning

1 2 3 i

(�e analysis of the VP gets revised since a be�er parse tree has been
found.)

26 / 27

Jurafsky, D. and Martin, J. H., editors (2009). Speech and Language Processing.
An Introduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition. Prentice Hall Series in Articial Intelligence.
Pearson Education International. Second Edition.

Manning, C. D. and Schütze, H. (1999). Foundations of Statistical Natural
Language Processing. �e MIT Press, Cambridge, Massachuse�s, London,
England.

27 / 27

