
Einführung in die Computerlinguistik
Parsing

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Summer 2018

1 / 30

Introduction (1)

A parser is a device that accepts a word w and a grammar G as input
and that

1 decides whether w is in the language generated by the gram-
mar and

2 if so, it provides a syntactic analysis for w or, if w is ambiguous,
a set of analyses, o�entimes represented in a compact way as a
derivation forest.

A device that does only the �rst part of the task is called a recognizer.

2 / 30

Introduction (2)

Example for parsing:

Input: “the man saw the girl”.
Output: S

VP

NP

N

girl

D

the

V

saw

NP

N

man

D

the

Input: “the man saw saw the girl”. Output: no.

3 / 30

Top-Down Parsing (1)
CFG parser that is

a top-down parser: we start with S and subsequently replace
le�hand sides of productions with righthand sides.

a directional parser: the expanding of non-terminals (with ap-
propriate righthand sides) is ordered; we start with the le�most
non-terminal and go through the righthand sides of produc-
tions from le� to right.
In particular: we determine the start position of the span of
the ith symbol in a rhs only a�er having processed the i − 1
preceding symbols.

a LL-parser: we process the input from le� to right while con-
structing a le�most derivation.

First proposed by Sheila Greibach (for CFGs in GNF).

4 / 30

Top-Down Parsing (2)

Assume a CFG without le� recursion A +⇒ Aα for α ∈ (N ∪ T)∗.

�e parser goes through di�erent pairs of remaining input and
sentential form (a stack), starting with w and the start symbol S.
In each step, we

either scan the next input symbol, provided it corresponds to
the top of the sentential form
or we non-deterministically predict a production that expands
the top of the sentential form, provided this is a non-terminal.
In this case we replace it with the rhs of a production.

Success, if we end with empty remaining input and empty sentential
form.

5 / 30

Top-Down Parsing (3)

Top-down parsing
S → aSb | c, input aacbb.
1. aacbb S initial
2. aacbb aSb predict from 1.
4. aacbb c predict from 1.
5. acbb Sb scan from 2.
6. acbb aSbb predict from 5.
7. acbb cb predict from 5.
8. cbb Sbb scan from 6.
9. cbb aSbbb predict from 8.
10. cbb cbb predict from 8.
11. bb bb scan from 10.
12. b b scan from 11.
13. ε ε scan from 12.

6 / 30

Top-Down Parsing (4)

Function top-down with arguments

w: remaining input;
α: remaining sentential form (a stack).

top-down(w,α) i� α ∗⇒ w (for α ∈ (N ∪ T)∗,w ∈ T∗)

Initial call:
top-down(w,S)

7 / 30

Top-Down Parsing (5)

function top-down(w,α):
out = false;
if w = α = ε, then out = true;
else if w = aw′ and α = aα′,

then out = top-down(w′,α′) scan
else if α = Xα′ with X ∈ N,

then for all X → X1 . . .Xk:
if top-down(w, X1 . . .Xkα

′) predict
then out = true;

return out

8 / 30

Top-Down Parsing (6)

How to turn the recognizer into a parser:

Add an analysis stack to the parser that allows you to construct the
parse tree.

Assume that for each A ∈ N , the righthand sides of A-productions are
numbered (have indices).

Whenever

a production is applied (prediction step), the le�hand side is
pushed on the analysis stack together with the index of the
righthand side;

a terminal a is scanned, a is pushed on the analysis stack.
(�is is needed for backtracking in a depth-�rst strategy.)

9 / 30

Top-Down Parsing (7)

function top-down(w,α,Γ):
out = false;
if w = α = ε,

then output Γ; out = true;
else if w = aw′ and α = aα′,

then out = top-down(w′,α′, aΓ)
else if α = Xα′ with X ∈ N,

then for all X → γ with rhs-index i:
if top-down(w, γα′, 〈X , i〉Γ)

then out = true;
return out

10 / 30

Shi�-Reduce Parsing (1)

CFG parser that is

a bo�om-up parser: we start with the terminals and subse-
quently replace righthand sides of productions with le�hand
sides.
a directional parser: the replacing of righthand sides with le�-
hand sides is ordered corresponding to a rightmost derivation.
a LR-parser: we process the input from le� to right while con-
structing a rightmost derivation.
a Shi�-reduce-parser: the two operations of the parser are shi�
and reduce.

11 / 30

Shi�-Reduce Parsing (2)

�e parser consists of

a stack (initially empty) Γ ∈ (N ∪ T)∗

the remaining input (initially w).

Idea:

w is shi�ed on the stack while, whenever the top of the stack
is the rhs of a production in reverse order, this is replaced with
the lhs.
Success if Γ = S and remaining input ε.

12 / 30

Shi�-Reduce Parsing (3)

For convenience we write the stack with its top on the right.

Shi�-reduce parsing
S → ABC,A→ a |Aa,B→ b |Bb,C → c
w = aabbbc.

aabbbc
a abbbc shi�
A abbbc reduce, A→ a
Aa bbbc shi�
A bbbc reduce, A→ Aa
Ab bbc shi�
AB bbc reduce, B→ b
ABb bc shi�

13 / 30

Shi�-Reduce Parsing (4)

Example continued

ABb bc
AB bc reduce, B→ Bb
ABb c shi�
AB c reduce, B→ Bb
ABc shi�
ABC reduce, C → c

S reduce, S → ABC

If we apply the productions in reverse order we obtain a rightmost
derivation:
S ⇒ ABC ⇒ ABc ⇒ ABbc ⇒ ABbbc ⇒ Abbbc ⇒ Aabbbc ⇒ aabbbc

14 / 30

Shi�-Reduce Parsing (5)

Assume a grammar without ε-productions and without loops.

function bottom-up(w,Γ):
if w = ε and Γ = S then true
else reduce(w,Γ) or shift(w,Γ)

function shift(w,Γ):
out = false
if w = aw′ and a ∈ T

then out = bottom-up(w′,Γa)
return out

15 / 30

Shi�-Reduce Parsing (6)

function reduce(w,Γ):
out = false;
for every A→ α ∈ P:

if Γ = Γ′α and bottom-up(w,Γ′A)
then out = true;

return out

Initial call: bottom-up(w, ε)

16 / 30

CYK

�e CYK parser is

a bo�om-up parser: we start with the terminals in the input
string and subsequently compute recognized parse trees by
going from already recognized rhs of productions to the non-
terminal on the le�hand side.
a non-directional parser: the order of the completing of sub-
trees is not necessarily from le� to right.
a chart parser: we store every intermediate result in a chart and
can reuse it in di�erent contexts. �is avoids computing the
same subtree several times. Particularly useful for ambiguous
grammars such as natural language grammars.

Independently proposed by Cocke, Kasami and Younger in the 60s.

17 / 30

CYK recognizer for CNF (1)

A CFG is in Chomsky Normal Form i� all productions are either of
the form A→ a or A→ B C.

If the grammar has this form,

we need to check only for two categories B, C, in order to con-
struct an A with A→ B C.
we can be sure that the spans always become longer when ap-
plying productions A → B C. I.e., if l1 and l2 are the lengthes
of B and C, then the length of the resulting A is l1 + l2 >
max(l1, l2).

Every CFG can be transformed into an equivalent CFG in CNF.

18 / 30

CYK recognizer for CNF (2)

�e chart C is an n× n-array. �e �rst index is the index of the �rst
terminal in the span and the second gives the length of a span.

A ∈ Ci,l indicates that we have found an A with a span starting at
index i and having length l.

Algorithm:

Ci,1 = {A |A→ wi ∈ P} scan
for all l ∈ [1..n]:

for all i ∈ [1..n]:
for every A→ B C:

if there is a l1 ∈ [1..l − 1] such that
B ∈ Ci,l1 and C ∈ Ci+l1,l−l1,

then Ci,l = Ci,l ∪ {A} complete

19 / 30

CYK recognizer for CNF (3)

CYK recognition for CNF grammars
S → CaCb | CaSB, SB → SCb,Ca → a,Cb → b.

(From S → aSb | ab with transformation into CNF.)

w = aaabbb.
l
6 S
5 SB
4 S
3 SB
2 S
1 Ca Ca Ca Cb Cb Cb

1 2 3 4 5 6 i
a a a b b b

20 / 30

CYK parsing (1)

We know that for every CFG G with ε /∈ L(G) we can

eliminate ε-productions,
eliminate unary productions,
eliminate useless symbols,
transform into CNF,

and the resulting CFG G′ is such that L(G) = L(G′).
�erefore, for every CFG, we can use the CNF recognizer a�er
transformation.

How can we obtain a parser?

21 / 30

CYK parsing (2)

We need to do two things:

turn the CNF recognizer into a parser, and
if the original grammar was not in CNF, retrieve the original
syntax from the CNF syntax.

22 / 30

CYK parsing (3)

To turn the CNF recognizer into a parser, we record not only
non-terminal categories but whole productions with the positions and
lenghts of the rhs symbols in the chart (i.e., with backpointers):

Ci,1 := {A→ wi |A→ wi ∈ P}
for all l ∈ [1..n]:

for all i ∈ [1..n]:
for every A→ B C:

if there is a l1 ∈ [1..l − 1] such that
B ∈ Ci,l1 and C ∈ Ci+l1,l−l1,

then Ci,l := Ci,l ∪ {A→ [B, i, l1][C, i + l1, l − l1]}

We can then obtain a parse tree by traversing the productions from
le� to right, starting with every S-production in C1,n.

23 / 30

CYK parsing (4)

Example
S → CaCb | CaSB, SB → SCb,Ca → a,Cb → b, w = aaabbb. (We
write Ai,l for [A, i, l].)
S →
Ca1,1SB2,5

SB →
S2,4Cb6,1
S →
Ca2,1SB3,3

SB →
S3,2Cb5,1
S →
Ca3,1Cb4,1

Ca → a Ca → a Ca → a Cb → b Cb → b Cb → b

24 / 30

CYK parsing (5)

From the CNF parse tree to the original parse tree:
First, we undo the CNF transformation:

replace every Ca → a in the chart with a and replace every
occurrence of Ca in a production with a.
For all l, i ∈ [1..n]: If A → αDiD,lD ∈ Ci,l such that D is a new
symbol introduced in the CNF transformation and D → β ∈
CiD,lD , then replace A→ αDiD,lD with A→ αβ in Ci,l .
Finally remove all D → γ with D being a new symbol intro-
duced in the CNF transformation from the chart.

25 / 30

CYK parsing (6)

Example
S → CaCb | CaSB, SB → SCb,Ca → a,Cb → b, w = aaabbb. New
symbols: Ca,Cb, SB. Elimination of Ca,Cb:
6 S → aSB2,5
5 SB → S2,4b
4 S → aSB3,3
3 SB → S3,2b
2 S → ab
1 a a a b b b

1 2 3 4 5 6

26 / 30

CYK parsing (7)

Example
S → CaCb | CaSB, SB → SCb,Ca → a,Cb → b, w = aaabbb.
Replacing of SB in rhs:
6 S → aS2,4b
5 SB → S2,4b
4 S → aS3,2b
3 SB → S3,2b
2 S → ab
1 a a a b b b

1 2 3 4 5 6

27 / 30

CYK parsing (8)

Example
S → CaCb | CaSB, SB → SCb,Ca → a,Cb → b, w = aaabbb.
Elimination of SB:
6 S → aS2,4b
5
4 S → aS3,2b
3
2 S → ab
1 a a a b b b

1 2 3 4 5 6

28 / 30

CYK parsing (9)

Undo the elimination of unary productions:

For every A → β in Ci,l that has been added in removing of
the unary productions to replace B→ β′ (β′ is β without chart
indices): replace A with B in this entry in Ci,l .
For every unary production A → B in the original grammar
and for every B → β ∈ Ci,l : add A → Bi,l to Ci,l . Repeat this
until chart does not change any more.

29 / 30

CYK parsing (10)

Undo the elimination of ε-productions:

Add a row with l = 0 and a column with i = n + 1 to the chart.
Fill row 0 as in the general case using the original CFG gram-
mar (tabulating productions).
For every A → β in Ci,l that has been added in removing
the ε-productions: add the deleted nonterminals to β with the
position of the preceding non-terminal as starting position (or i
if it is the �rst in the rhs) and with length 0.

30 / 30

	Introduction
	Top-Down Parsing
	Shift-Reduce Parsing
	Cocke-Kasami-Younger (CKY or CYK)
	CYK recognizer for CNF
	CYK parsing

