Einfithrung in die Computerlinguistik

Feature Structures — Merkmalsstrukturen

Laura Kallmeyer
Heinrich-Heine-Universitit Diisseldorf

Summer 2018

HEINRICH HEINE

UNIVERSITAT DUSSELDORF

23

Introduction (1)

Non-terminals that are used in CFGs are usually not enough to
express linguistic generalisations

Exmample: Agreement

Missed generalisation:

S — NP-Sg VP-Sg S — NP-P1 VP-PI

Better: S — NP VP Condition: NP and VP agree in their number

23

Introduction (2)
To express such generalisations, we can factorise the non-terminals:

m A non-terminal is no longer atomic, but it has a structure.

m The content of the non-terminals is described via attributes (i.e.,
features) that can have certain values.

m Such structures are called attribute-value structures or feature
structures. They are often represented in an attribute-value

matrix (AVM).
Feature structures
cat NP lex ihm pred give
num Pl cat Pro donor Adam
case dat theme apple
num Sg recipient Eve

gen m

3/23

Introduction (2)

m It is possible to refer to the same attribute value in different
places (structure sharing)

Structure sharing

{cat S}—> cat NP | | cat VP
num num

(The variable [i] always denotes the same value.)

pred give
donor [TJAdam
agent

theme apple

recipient Eve

Introduction (4)

m Underspecification: Not all the values are always known. In-
stead of listing all the possibilities it is possible to specify only
those values that are known.

Underspecification of attributes

cat
num

gen

cat

num

cat
num

gen

pers

N [— man cat N| — fish
Sg gen n

m

Det| — a {cat Det} — the
Sg

NP | — |cat Det| |cat N
num num
gen

3

Introduction (5)

m Attributes do not necessarily have atomic values. The value of
an attribute can be another attribute-value structure.

Recursive feature structures

[cat N — fish cat Det —a
agr [gen n} agr [num Sg]

[cat NP — |cat Det| [cat N

agr { pers 3} agr agr

6/23

Attribute-value structures as graphs (1)

Attribute-value structures are usually formalised as directed graphs.

Two possibilities: an attribute-value matrix such as
cat N

agr [gen n]

@ can be represented as a directed graph

cat N

agr
gen

O—»n

@ or as a description of such a graph, that can be in principle
satisfied by an infinite number of graphs.

Attribute-value structures as graphs (2)

In the following, we assume feature structures to be graphs (and not
expressions in a feature logic).

Feature structure

A (untyped) feature structure can be defined as a tuple (V, A, Val, r)
such that

m V is a set of vertices (= nodes).

m A is a finite set of partial functionsa: V — V

m Val is a finite set of atomic values and there is a partial function
lyg : {v € V|thereis no a € A such that a(v) is defined, i.e.,
there is no outgoing edge for v} — Val

m r € V is the unique root of the feature structure, i.e., there is
exactly one node in V (which is r) such that r does not have an
incoming edge or, to put it differently, thereisnov € V,a € A
with a(v) = r.

Attribute-value structures as graphs (3)

Feature structures as graphs

m possible feature structure:

t
S subj OL’ NP
\O/ agr\~(s sg

cat :
pred cat
m ill-formed feature structures:
t t
S L% NP (attributes have to be functional)
cat cat
O NP O (there must be a unique root node)

S et S (only leaves are labeled with atomic values)

Attribute-value structures as graphs (4)

Attribute-value graphs are not always trees since we can have more
than one incoming edge per node.

Structure Sharing

[cat S

cat NP

subj agr [num sg}

cat VP
pred
agr S
) ~ cat
subj cat NP
structure sharing . agr .
pre s
agr O g

cat

10/23

Subsumption and unification (1)

Subsumption: Relation on feature structures: S; subsumes S,
(81 E Sp), if S, contains (at least) all the information from S;.

Subsumption
Ex. 5;: |cat V Sp: |orth laughs
agr {num Sg} cat V
3
agr pers]
num Sg

SSES

In other words: there is a homomorphism from the nodes of S; to the
nodes of S, that preserves edges and labels and that maps the root of
S; to the root of S,.

Subsumption and unification (2)

Subsumption S; as a graph and its image under the homomorphism

Example
in Sz :
cat N
agr
- num Sg
cat N .
pers
agr
orth num | ge

laughs

12/23

Subsumption and unification (3)

Let S; = (V1, A, Val,r;) and S, = (V,, A, Val, ry) be feature struc-
tures.
S; subsumes S, S; C S, if there is a function h : V; — V5 such that
| h(rl) = 9,
m forall vi,v, € V;and all a € A: if a(v;) = v,, then a(h(v;)) =
h(vy), and

m forall ve Vi andall I € Val: if Ly, (v) = [, then lyy(h(v)) = L

Subsumption and unification (3)

Subsumption: more examples

m S |cat N Sp: |orth laughs
S 3
agr num g] agr [pers]
case acc num Sg
ST SEZS
m S;: [cat N Sy: [cat N
agr pers 3]
agr
num Sg

SCS

Subsumption and unification (4)

Subsumption is a partial order, so it is

@ reflexive: each structure subsumes itself S C S for all S;
Q transitive: if S C S, and S; C S3 then S; C S5 for all Sy, S,, S3;
@ asymmetric: if S; C S, and S; C S; then §; = S,.

An empty feature structure | | subsumes all other feature structures.

Subsumption and unification (5)

A feature structure S is a unification of S; and S, (S; U S,), if S is
subsumed by both S; and S, and S subsumes all other feature
structures, that are subsumed by both S; and S,.

cat V U [cat V = |cat V
S
agr [num Sg] agr {pers 3] agr num g]
pers 3

To make U always defined, we introduce a symbol L that refers to an
inconsistent feature structure that is subsumed by all feature
structures.

cat NP L |cat V =1

agr [num Sg]

Subsumption and unification (6)

Feature structures that are related by the C relation, form a lattice: C
is a partial order and for any S;, S, the following holds:

(sup) There is a feature structure S, such that S; C Sand S, C Sand S
also subsumes all other feature structures that are subsumed by
both S; and S,. S is called Supremum of {S;, S;}.

(inf) There is a feature structure S, such that SC S; and SC S, and S
is subsumed by all other structures that subsume both S; and S,.
S is called Infimum of {S;, S, }.

From this it follows that with respect to the C the smallest element is
[], and the biggest element is L.

Typed feature structures (1)

The examples mentioned above implicitly imply that cAT is a
syntactic category and AGR is responsible for the agreement. Le., the
following feature structures should not be possible:

t S
@ & [cat [agr [pers BHI
[num 3
agr

pers V

However, nothing prevents the existence of such structures so far, as
there is no generalisation defined for this case.

Goal: formulate restrictions of the kind “an agreement feature
structure can hve only attributes NUM, PERS and GEN”.

Typed feature structures (2)

So we introduce types for feature structures:

m Each feature structure has a type 7.

m For each type 7 it is defined which attributes it has and what
are the types of the values of these attributes.

m Types are organised in a type hierarchy, where specific types
are ordered under the general types.

m Unification operation is extended in order to take care of the
types.

19/23

Typed feature structures (3)

Types and their possible arguments are identified using the type
hierarchy and attributes for single types.

agr-structure agr]
agr

agr num num
gen gen
pers pers

determiner noun] syncat
quant quant| |case case| |cat cat
Type quant: {every, most, some, none}, Type num: {Sg, P1}, Type gen:
{m,f;n}, Type pers: {1, 2,3}, Type case: {nom, acc, dat}, Type cat: {N,
V,NP, VP, S, ...}

20/23

Typed feature structures (4)

agr-structure syncat agr
agr agr cat cat LTI T2
gen gen
[determiner 1 [noun 1 pers pers
quant quant case case

agr-structure syncat

> |

Type hierarch det noun noun
e hierarchy: e
P ’ cat N
The attributes of noun are determined case acc
by the types agr-structure, syncat and agr
noun. num Sg
agr
gen m
pers 3
b . 21

Extensions (1)

Some linguistic theories use also sets or lists as attribute values.
Example.: Head-Driven Phrase Structure Grammar (HPSG) codes
syntactic trees as feature structures, where all the daughters of the
node are provided as a value of the respective attribute in form of a
list.

set attributes

phrase
cat VP
cat PRO
dtrs (, cat V cat NP)
orth I dtrs (5)
orth love| |orth New York

22/23

Extensions (2)

m Some systems work directly with feature structures as graphs.
m Some use descriptions of features structures.
Advantage of descriptions: variable expressive power depending on

the used Logic (of course in connection with the complexity). Some
useful operations:

@ Disjunction: CASE = acc V CASE = dat
@ Negation: —(CASE = nom)

© Non-equality of paths: sUBy [CASE] # 0OBJ [CASE]

23/23

