
Einführung in die Computerlinguistik
Context-Free Grammars (CFG)

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Summer 2018

1 / 1

CFG (1)

In contrast to regular grammars, CFGs allow any combination of
non-terminal and terminal symbols in the righthand sides of
productions.

CFG Gtelescope

Nonterminals {S, NP, VP, PP, D, N, V, P}
Terminals {man, girl, the, John, Mary, telescope, with, saw}
Start symbol S
Productions
S→ NP VP NP→ D N N→ N PP
VP→ VP PP VP→ V NP PP→ P NP
N→ man N→ girl N→ telescope
D→ the NP→ John NP→Mary
P→ with V→ saw

2 / 1

CFG (2)

Example continued
S→ NP VP NP → D N N → N PP VP → VP PP
VP → V NP PP → P NP N → man N → girl
N→ telescope D → the NP → John NP →Mary
P → with V → saw

Sentences one can generate with this grammar:

(1) John saw Mary

(2) John saw the girl

(3) the man with the telescope saw John

(4) John saw the girl with the telescope

. . .

3 / 1

CFG (3)

CFG
A context-free grammar (CFG) is a tuple G = 〈N , T , P, S〉 such that

N and T are disjoint alphabets, the nonterminals and terminals,

S ∈ N is the start symbol, and

P is a set of productions of the form

A→ β

with A ∈ N , β ∈ (N ∪ T)∗.

Any β ∈ (N ∪ T)∗ with S ∗⇒ β is called a sentential form.

4 / 1

CFG (4)

CFGs
CFG Ganbn = 〈{S}, {a, b}, P, S〉 with productions

S→ aSb S→ ε

generates the languge {anbn | n ≥ 0}

CFG Ga,b = 〈{S,A,B}, {a, b}, P, S〉 with productions

S→ aB S→ bA
A→ a A→ aS A→ bAA
B→ b B→ bS B→ aBB

generates the languge {w |w ∈ {a, b}+, |w|a = |w|b}

5 / 1

CFG (5)

Parse tree
A tree t is a parse tree for a CFG G = 〈N , T , P, S〉 i�

each node in t is labeled with a x ∈ N ∪ T ∪ {ε};
the root label is S;
if there is a node with label A that has n daughters labeled
(from le� to right) x1, . . . , xn, then A→ x1 . . . xn ∈ P .
if a node has label ε, it is a leaf and the unique daughter of its
mother node.

S ∗⇒ α in G i� there is a parse tree for G with yield α.

6 / 1

CFG (6)

Parse trees for Ga,b

S→ aB S → bA A → a A → aS A → bAA
B → b B → bS B → aBB

S

B

Sb

a

S

A

A

a

A

A

a

A

a

b

b

b

S

B

B

S

A

a

b

b

B

b

a

a

7 / 1

CFG (7)

String language, derivation, tree language
Let G = 〈N , T , P, S〉 be a CFG. �e string language L(G) of G is
the set {w ∈ T∗ | S ∗⇒ w} where

for w,w′ ∈ (N ∪ T)∗: w ⇒ w′ i� there is a A→ β ∈ P and there
are v, u ∈ (N ∪ T)∗ such that w = vAu and w′ = vβu.
∗⇒ is the re�exive transitive closure of⇒.

A derivation of a word w ∈ T∗ is a sequence S ⇒ α1 · · · ⇒ w
of derivation steps leading to w.

�e tree language is the set of all parse trees with root label S
and all leaves labelled with a ∈ T ∪ {ε}.

8 / 1

CFG (8)

For a single parse tree, there might be more than one corresponding
derivation.

Le�most/rightmost derivation
A derivation is called a

le�most derivation i�, in each derivation step, a production
is applied to the le�most non-terminal of the already derived
sentential form.

rightmost derivation i�, in each derivation step, a production
is applied to the rightmost non-terminal of the already derived
sentential form.

9 / 1

CFG (9)

Derivations
Take the grammar Ga,b and the following parse tree:

S

B

B

S

A

a

b

b

B

b

a

a Le�most derivation:
S ⇒ aB⇒ aaBB⇒ aabB
⇒ aabbS ⇒ aabbbA⇒ aabbba

Rightmost derivation:
S ⇒ aB⇒ aaBB⇒ aaBbS
⇒ aaBbbA⇒ aaBbba⇒ aabbba

10 / 1

CFG (10)

For a single word w, there might be more than one parse tree:

Ambiguous CFG

A CFG giving more than one parse tree for some word w is
called ambiguous.

Example: Gtelescope with w =
John saw the man with the telescope
Ga,b with w = aabbab

A CFL L is called inherently ambiguous if each CFG G with
L = L(G) is ambiguous.

Example:
{anbncmdm | n ≥ 1,m ≥ 1} ∪ {anbmcmdn | n ≥ 1,m ≥ 1}

11 / 1

PDA (1)

A push-down automaton is a FSA with an additional stack. �e moves
of the automaton depend on

the current state,
the next input symbol, and
the topmost stack symbol.

Each move consists of

changing state,
popping the topmost symbol from the stack, and
pushing a new sequence of symbols on the stack.

12 / 1

PDA (2)

PDA
Example: Automaton that

starts with q1 and stack #,
in q1: pushes A on the stack for an input symbol a,
in q1: leaves stack unchanged and goes to q2 for an input sym-
bol c,
in q2: pops an A from the stack for input symbol b,
in q2: moves to q3 if the top of the stack is #

�e automaton accepts all words that allow to end up in q3.

Language {ancbn | n ≥ 0}

13 / 1

PDA (3)

In general, PDAs are non-deterministic, since a given state, input
symbol and topmost stack symbol can allow for more than one move.

In contrast to FSA, the deterministic version of the automaton is not
equivalent to the non-deterministic one: �ere are languages that are
accepted by a non-deterministic PDA but not by any deterministic
PDA.

CFLs are the languages accepted by (non-deterministic) PDAs.

14 / 1

PDA (4)

PDA
A push-down automaton (PDA) M is a tuple 〈Q,Σ,Γ, δ, q0,Z0, F〉
with

Q is a �nite set of states.
Σ is a �nite set, the input alphabet.
Γ is a �nite set, the stack alphabet.
q0 ∈ Q is the initial state.
Z0 ∈ Γ is the initial stack symbol.
F ⊆ Q is the set of �nal states.
δ : Q × (Σ ∪ {ε})× Γ→ P�n(Q × Γ∗) is the transition function.
(P�n(X) is the set of �nite subsets of X).

Equivalently, one can even de�ne δ as
δ : Q × (Σ ∪ {ε})× Γ∗ → P�n(Q × Γ∗).

15 / 1

PDA (5)

PDAs can also be drawn as graphs:

q1 q2 q3

〈a, ε,A〉

〈c, ε, ε〉

〈b,A, ε〉

〈ε,#,#〉

An edge label 〈a,A,B〉 signi�es that a is read, A is popped from the
stack and B is pushed on the stack.

In other words, 〈q2,B〉 ∈ δ(q1, a,A) i� there is an edge from q1 to q2
labeled 〈a,A,B〉.

16 / 1

PDA (6)

Instantaneous description
An instantaneous description of a PDA is a triple (q,w, γ) with

q ∈ Q is the current state of the automaton,
w ∈ Σ∗ is the remaining part of the input string, and
γ ∈ Γ∗ is the current stack.

(q, aw,Zα) ` (q′,w, βα) i� 〈q′, β〉 ∈ δ(q, a,Z) for all q, q′ ∈ Q, a ∈
Σ ∪ {ε},w ∈ Σ∗,Z ∈ Γ, α, β ∈ Γ∗.

∗
` is the re�exive transitive closure of `.

17 / 1

PDA (7)

�ere are two alternatives for the de�nition of the language accepted
by a PDA M = 〈Q,Σ,Γ, δ, q0,Z0, F〉:

Language accepted by an PDA
�e language accepted by M with a �nal state is

L(M) := {w | (q0,w,Z0)
∗
` (qf , ε, γ) for a qf ∈ F and a γ ∈ Γ∗}

�e language accepted by M with an empty stack is

N (M) := {w | (q0,w,Z0)
∗
` (q, ε, ε) for a q ∈ Q}

�e two modes of acceptance are equivalent, i.e., for each language L:
there is a PDA M1 with L = L(M1) i� there is a PDA M2 with
L = N (M2).

18 / 1

PDA (8)

PDA M for L(M) = {wcwR |w ∈ {a, b}∗}

q1 q2 q3

〈a, ε,A〉

〈b, ε,B〉

〈c, ε, ε〉

〈a,A, ε〉

〈b,B, ε〉

〈ε,#,#〉

Q = {q1, q2, q3}, Σ = {a, b, c}, Γ = {#,A,B}.
q0 = q1, Z0 = #, F = {q3}.
δ(q1, a, ε) = {〈q1,A〉} δ(q1, b, ε) = {〈q1,B〉}
δ(q1, c, ε) = {〈q2, ε〉}
δ(q2, a,A) = {〈q2, ε〉} δ(q2, b,B) = {〈q2, ε〉}
δ(q2, ε,#) = {〈q3,#〉}

19 / 1

PDA (9)

PDA M for N (M) = {wcwR |w ∈ {a, b}∗}

q1 q2 q3

〈a, ε,A〉

〈b, ε,B〉

〈c, ε, ε〉

〈a,A, ε〉

〈b,B, ε〉

〈ε,#, ε〉

Q = {q1, q2}, Σ = {a, b, c}, Γ = {#,A,B}.
q0 = q1, Z0 = #, F = ∅.
δ(q1, a, ε) = {〈q1,A〉} δ(q1, b, ε) = {〈q1,B〉}
δ(q1, c, ε) = {〈q2, ε〉}
δ(q2, a,A) = {〈q2, ε〉} δ(q2, b,B) = {〈q2, ε〉}
δ(q2, ε,#) = {〈q2, ε〉}

20 / 1

PDA (10)

DPDA
A PDA M = 〈Q,Σ,Γ, δ, q0,Z0, F〉 is a deterministic PDA (DPDA) i�

for all q ∈ Q,Z ∈ Γ, a ∈ Σ ∪ {ε}: |δ(q, a,Z)| ≤ 1, and
for all q ∈ Q,Z ∈ Γ: if δ(q, ε,Z) 6= ∅, then δ(q, a,Z) = ∅ for all
a ∈ Σ.

�e preceding example was a DPDA.

�e class of languages accepted by DPDAs is smaller than the class
accepted by (non-deterministic) PDAs.

Example of a language that requires a non-determinstic PDA:
{wwR |w ∈ {a, b}∗}.

21 / 1

PDA and CFG (1)

For each CFL L, there is a PDA M with L = N (M).

Construction: Assume that ε /∈ L. L = L(G) for a CFG
G = 〈N , T , P, S〉 in Greibach-Normal Form (GNF).
�is means that all productions have the form A→ aγ with
A ∈ N , a ∈ T , γ ∈ N ∗.
Every CFG can be transformed into an equivalent CFG in GNF.

Equivalent PDA:
M = 〈{q}, T ,N , δ, q, S, ∅〉 with 〈q, γ〉 ∈ δ(q, a,A) i� A→ aγ ∈ P .

�e automaton simulates le�most derivations in G.

22 / 1

PDA and CFG (2)

From CFG to PDA
Take the CFG Ganbn = 〈{S}, {a, b}, {S → aSb, S → ab}, S〉.

Equivalent CFG in GNF:
G′anbn = 〈{S,B}, {a, b}, {S → aSB, S → aB,B→ b}, S〉.

Equivalent PDA: M = 〈{q}, {a, b}, {S,B}, δ, q, S, ∅〉 with acceptance
with empty stack:

q

〈a, S, SB〉

〈a, S,B〉

〈b,B, ε〉

23 / 1

PDA and CFG (3)

For each PDA M with L = N (M): L is a context-free language.

Construction of equivalent CFG for given PDA
M = 〈Q,Σ,Γ, δ, q0,Z0, F〉:

nonterminals: S and all [q1,Z , q2] with q1, q2 ∈ Q, Z ∈ Γ.
productions: S → [q0,Z0, q] for every q ∈ Q, and
[q,A, qm+1]→ a[q1, B1, q2], . . . , [qm, Bm, qm+1] for q, q1, . . . , qm+1 ∈
Q, a ∈ Σ ∪ {ε},A,B1, . . . ,Bm ∈ Γ such that 〈q1,B1 . . .Bm〉 ∈
δ(q, a,A)
[q,A, q1]→ a if 〈q1, ε〉 ∈ δ(q, a,A).

[q1,A, q2]
∗⇒ w i� (q1,w,A)

∗
` (q2, ε, ε).

24 / 1

PDA and CFG (4)

From PDA to CFG

q1 q2 q3

〈a, ε,A〉

〈b, ε,B〉

〈c, ε, ε〉

〈a,A, ε〉

〈b,B, ε〉

〈ε,#, ε〉

Productions of the equivalent CFG (only useful productions listed):
S → [q1,#, q3] [q1,#, q3]→ c[q2,#, q3] [q2,#, q3]→ ε

[q1,#, q3]→ a[q1,A, q2][q2,#, q3] [q1,#, q3]→ b[q1,B, q2][q2,#, q3]

[q1,A, q2]→ a[q1,A, q2][q2,A, q2] [q1,A, q2]→ b[q1,B, q2][q2,A, q2]

[q1,B, q2]→ a[q1,A, q2][q2,B, q2] [q1,A, q2]→ b[q1,B, q2][q2,B, q2]

[q1,A, q2]→ c[q2,A, q2] [q1,B, q2]→ c[q2,B, q2]

[q2,A, q2]→ a [q2,B, q2]→ b

25 / 1

Hopcro�, J. E. and Ullman, J. D. (1979). Introduction to Automata �eory,
Languages and Computation. Addison Wesley.

26 / 1

	Context-Free Grammars
	Push-down automata
	PDA and CFG

