
Kallmeyer CL-Einführung

Einführung in die Computerlinguistik

Kontextfreie Grammatiken - Formale
Eigenschaften

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Sommersemester 2013

CFG - Formal Properties 1 Sommer 2013

Kallmeyer CL-Einführung

Overview

1. Normalformen

2. Abgeschlossenheitseigenschaften

3. Pumping Lemma

[Hopcroft and Ullman, 1979]

CFG - Formal Properties 2 Sommer 2013

Kallmeyer CL-Einführung

Normal forms (1)

A normal form of a grammar formalism F is a further restriction

on the grammars in F that does not affect the set of generated

string languages.

Let G = 〈N, T, P, S〉 be a CFG. A X ∈ N ∪ T is called

• useful if there is a derivation S
∗

⇒ αXβ
∗

⇒ w with w ∈ T ∗.

• useless otherwise.

For each CFG, there exists an equivalent CFG (= a CFG

generating the same string language) without useless symbols.

CFG - Formal Properties 3 Sommer 2013

Kallmeyer CL-Einführung

Normal forms (2)

To eliminate all useless symbols two things need to be done:

1. All X ∈ N need to be eliminated that cannot lead to a

terminal sequence.

This can be done recursively: Starting from the terminals and

following the productions from right to left, the set of all

symbols leading to terminals can be computed recursively.

Productions containing symbols that are not in this set are

eliminated.

2. In the resulting CFG, the unreachable symbols need to be

eliminated.

This is done starting from S and applying productions. Each

time, the symbols from the right-hand sides are added.

Again, productions containing non-terminals or terminals that

are not in the set are eliminated.

CFG - Formal Properties 4 Sommer 2013

Kallmeyer CL-Einführung

Normal Forms (3)

A production of the form A → ǫ is called a ǫ-production.

The following holds:

For each CFG G, there is a CFG G′ without ǫ-productions such

that L(G′) = L(G) \ {ǫ}.

CFG - Formal Properties 5 Sommer 2013

Kallmeyer CL-Einführung

Normal Forms (4)

In order to eliminate ǫ-productions, we

• compute the set Nǫ = {A |A
∗

⇒ ǫ} recursively:

1. Nǫ := {A ∈ N |A ⇒ ǫ}.

2. For all A with A → α, α ∈ N∗

ǫ
: add A to Nǫ.

3. Repeat 2. until Nǫ does not change any more.

• delete the ǫ-productions and for each A → X1 . . .Xn: add all

productions one can obtain by deleting some X ∈ Nǫ from the

right-hand side as long as one does not delete all X1, . . . , Xn.

CFG - Formal Properties 6 Sommer 2013

Kallmeyer CL-Einführung

Normal Forms (5)

A production of the form A → B is called a unary production.

For each CFL that does not contain ǫ, a CFG without unary

productions can be found.

Elimination of unary productions for a CFG without ǫ-productions:

• For all A
∗

⇒ B and all B → β, β /∈ N : add A → β.

• Delete all unary productions.

CFG - Formal Properties 7 Sommer 2013

Kallmeyer CL-Einführung

Normal Forms (6)

There are two important normal forms for CFGs: A CFG for a

language without ǫ is

• in Chomsky normal form iff all productions have either the

form A → BC or A → a with A,B,C ∈ N, a ∈ T .

• in Greibach normal form iff all productions have the form

A → aα with a ∈ T, α ∈ N∗.

CFG - Formal Properties 8 Sommer 2013

Kallmeyer CL-Einführung

Normal Forms (7)

For each CFL L without ǫ, there is a CFG G in Chomsky normal

form with L = L(G).

Construction of an equivalent CFG in CNF for a given CFG (after

elimination of useless symbols, ǫ-productions and unary

productions):

1. For each terminal a: introduce new non-terminal Ca, replace a

with Ca in all right-hand sides of length > 1 and add

production Ca → a.

CFG - Formal Properties 9 Sommer 2013

Kallmeyer CL-Einführung

Normal Forms (8)

2. For each production A → B0 . . .Bn introduce new

non-terminals D1, . . . , Dn−1 and replace production with

productions

A → B0D1, D1 → B1D2, D2 → B2D3, . . . , Dn−1 → Bn−1Bn.

A

B0 . . . Bn

❀

A

B0 D1

B1 D2

. . .

Dn−1

Bn−1 Bn

CFG - Formal Properties 10 Sommer 2013

Kallmeyer CL-Einführung

Normal Forms (9)

For each CFL L without ǫ, there is a CFG G in Greibach normal

form with L = L(G).

For the construction see [Hopcroft and Ullman, 1994].

CFG - Formal Properties 11 Sommer 2013

Kallmeyer CL-Einführung

Closure Properties (1)

CFLs are closed

• under union (construction: add S′ → S1|S2 where S1, S2 the

start symbols of the two CFGs; condition: non-terminals in the

two CFGs pairwise disjoint)

• under concatenation and Kleene closure (construction as with

regular languages)

• under homomorphisms (construction: replace terminals in

productions with their images under the homomorphism)

• under substitution (construction: replace terminals in first

CFG with start symbols of corresponding CFGs, make sure

non-terminals of the involved CFGs are pairwise disjoint)

CFG - Formal Properties 12 Sommer 2013

Kallmeyer CL-Einführung

Closure Properties (2)

CFLs are closed under intersection with regular languages

(construction: take the CFG and the DFA of the regular language;

then build a new CFG by replacing non-terminals A with triples

〈q1, A, q2〉 where the triple stands for derivation of the yield of A

while traversing a DFA path from q1 to q2)

CFG - Formal Properties 13 Sommer 2013

Kallmeyer CL-Einführung

Closure Properties (3)

Example for intersection with regular languages:

CFG: S → aSb | ε, regular language a+b+.

DFA: q0 q1 q2
a

a

b
b

Intersection grammar, start symbol S′:

S′ → 〈q0, S, q2〉 (q2 is the only final state)

〈q0, S, q2〉 → a〈q1, S, q1〉b (with δ(q0, a) = q1, δ(q1, b) = q2)

〈q0, S, q2〉 → a〈q1, S, q2〉b (with δ(q0, a) = q1, δ(q2, b) = q2)

〈q1, S, q2〉 → a〈q1, S, q2〉b (with δ(q1, a) = q1, δ(q2, b) = q2)

〈q1, S, q2〉 → a〈q1, S, q1〉b (with δ(q1, a) = q1, δ(q1, b) = q2)

〈q1, S, q1〉 → ε (since q1 = q1)

CFG - Formal Properties 14 Sommer 2013

Kallmeyer CL-Einführung

Pumping Lemma (1)

• In a context-free derivation, the expansion of a non-terminal A

does not depend on the context A occurs in.

• Consequently, if we have a derivation

S
+
⇒ xAz

+
⇒ xv1Av2z

+
⇒ xv1yv2z

then the part A
+
⇒ v1Av2 of the derivation can be iterated, i.e.,

we can also have

S
+
⇒ xvi1yv

i

2z

for any i ≥ 1.

CFG - Formal Properties 15 Sommer 2013

Kallmeyer CL-Einführung

Pumping Lemma (2)

Looking at the derivation trees, this is even clearer:

Assume that in a derivation tree, if the derivation tree has a certain

minimal height (maximal length of paths from root to leaves), we

have a path from the root (symbol S) to a leaf such that

• on this path, a non-terminal A occurs twice, and

• below the higher of these As, there is only a single A and no

other non-terminal is repeated on any path.

Since the number of non-terminals is finite, from a certain string

length on, every derivation treee of a word in the language is

necessarily of this form.

CFG - Formal Properties 16 Sommer 2013

Kallmeyer CL-Einführung

Pumping Lemma (3)

The part of the derivation tree in between the two nodes with the

same non-terminal can be iterated. This means that the strings

yielded by this part are pumped.

A

A

x v1 y v2 z

CFG - Formal Properties 17 Sommer 2013

Kallmeyer CL-Einführung

Pumping Lemma (4)

Pumping lemma for context-free languages: Let L be a context-free

language. Then there is a constant k such that for all w ∈ L with

|w| ≥ k: w = xv1yv2z with

• |v1v2| ≥ 1,

• |v1yv2| ≤ k, and

• for all i ≥ 0: xvi1yv
i
2z ∈ L.

CFG - Formal Properties 18 Sommer 2013

Kallmeyer CL-Einführung

Pumping Lemma (5)

With the pumping lemma and the closure properties, we can show

for a lot of languages that they are not context-free:

L1 = {anbncn |n ≥ 1} is not context-free.

Proof: Assume that L1 is context-free. Then it must satisfy the

pumping lemma with some constant k. Consequently, for every

w ∈ L1 and then in particular for akbkck, we must find substrings

v1, v2 that can be iterated. Either they contain each only

occurrences of a single terminal. Then the iteration will yield words

that have no longer the same numbers of as, bs and cs. Or at least

one contains at least two different terminals. Then the iterations

necessarily lead to words where the as, bs and cs get mixed.

⇒ L1 does not satisfy the pumping lemma, contrary to the

assumption and therefore L1 cannot be context-free.

CFG - Formal Properties 19 Sommer 2013

Kallmeyer CL-Einführung

Pumping Lemma (6)

L2 = {w |w ∈ {a, b, c}∗, |w|a = |w|b = |w|c} is not context-free.

Proof: Assume that L2 is context-free. Then its intersection with

the regular language a+b+c+ must also be context-free. However,

this intersection is L1 = {anbncn |n ≥ 1}, for which we have just

shown that it is not context-free.

⇒ Since L1 is not context-free, our assmption is false and L2 is not

context-free either.

CFG - Formal Properties 20 Sommer 2013

Kallmeyer CL-Einführung

References

[Hopcroft and Ullman, 1979] Hopcroft, J. E. and Ullman, J. D. (1979).

Introduction to Automata Theory, Languages and Computation.

Addison Wesley.

[Hopcroft and Ullman, 1994] Hopcroft, J. E. and Ullman, J. D. (1994).

Einführung in die Automatentheorie, Formale Sprachen und

Komplexitätstheorie. Addison Wesley, 3. edition.

CFG - Formal Properties 21 Sommer 2013

