

Singular Count NPs in Measure Constructions

SALT 27, University of Maryland

Hana Filip
hana.filip@gmail.com

Peter Sutton
peter.r.sutton@icloud.com

MAIN IDEA

Heinrich Heine University

Two kinds of count Ns

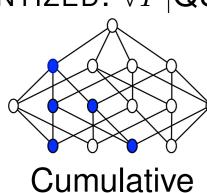
- QUANTIZED COUNT NS: lexically determine their CRITERION OF INDIVIDUATION at all contexts (lexically fix what is 'one' in their denotation for all contexts) cat, lentil;
- NON-QUANTIZED COUNT Ns: lexically do not uniquely determine their CRITERION OF INDI-VIDUATION (what is 'one' in their denotation varies with context) - *fence, twig, line*.
- **Key evidence**: Only *fence*-like count Ns, just like mass Ns, occur in measure (pseudopartitive) DPs: ?three pounds of cat_C three yards of fence_c three inches of snow_M

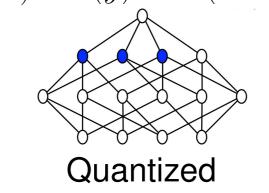
BACKGROUND

Krifka (1989)

• Two Mereologically-based Predicate Types

- CUMULATIVE: $\forall P[\mathsf{CUM}(P) \leftrightarrow \forall x \forall y [P(x) \land P(y) \to P(x \sqcup y)]]$ water, apples
- QUANTIZED: $\forall P[\mathsf{QUA}(P) \leftrightarrow \forall x \forall y [P(x) \land P(y) \to \neg (x \sqsubseteq y)]]$ (an) apple, two liters of water





From Krifka (2007)

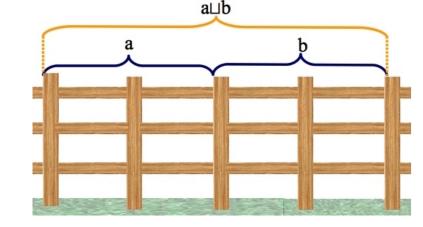
• Lexical Mass Ns denote CUMULATIVE sets, only specify a qualitative criterion of application: $\lambda x [\text{WATER}(x)]$

- Lexical Count Ns denote QUANTIZED sets, specify a qualitative and a quantitative criterion of application: $\lambda n \lambda x [\text{APPLE}(x) \wedge \text{NU}(\text{APPLE})(x) = n]$, where NU ('natural unit') is a kind of extensive measure function, contributing the quantitative criterion
- Extensive Measure Function μ (e.g. LITER, KILO) is a function relative to a sum operation \sqcup_P on a part structure P, iff it maps substances to positive real numbers such that: $\neg x \circ_P y \to [\mu(x \sqcup_P y) = \mu(x) + \mu(y)]$ (additivity).

Quantizing Modification:

 $\forall P \forall Q [\mathsf{QMOD}(P,Q) \leftrightarrow \neg \mathsf{QUA}(P) \land \mathsf{QUA}(Q(P))$ two liters (of), four kilos (of) – require a $\neg \mathsf{QUA}(P)$ and derive a $\mathsf{QUA}(P)$: (an) apple, two liters of water

Problem: fence



- QUANTIZATION not necessary for Ns to be grammatically count (Krifka 1989:87, Partee, p.c.)
- **fence**-like count Ns: *sequence*, *line*, *wall*, *band*, *bouquet*, *plane*, *hedge* ...

Rothstein (2010)

- ullet Lexical Mass Ns of type $\langle e,t
 angle$
- Lexical Count Ns of type $\langle \langle e \times k \rangle, t \rangle$ (lexical count Ns indexed to counting contexts)

How many fences are there in the picture?

- In context k_1 :

 $|\{\langle a, k_1 \rangle, \langle b, k_1 \rangle, \langle c, k_1 \rangle, \langle d, k_1 \rangle\}| = 4$ (two fences)

- In context k_2 : $|\{\langle a \sqcup b \sqcup c \sqcup d, k_1 \rangle\}| = 1$ (one fence)

Counting is counting entity-context pairs

Problem

• Assimilating the analysis of count Ns like *cat* under context-sensitive count Ns like *fence* raises the question why we have only one licensed individuation schema for *cat*, but multiple ones for *fence*?

Landman (2011)

- For object mass nouns (Landman's 'neat' mass Ns), generator sets = entities that count as 'one': e.g.,
 gen(KITCHENWARE) = {teacup, saucer, teacup □ saucer, pestle, mortar, pestle □ mortar}
- Overlapping entities count as 'one' SIMULTANEOUSLY IN THE SAME CONTEXT
- Different maximally disjoint subsets (Landman's VARI-ANTS) yield different cardinalities
 COUNTING GOES WRONG

EMPIRICAL EVIDENCE

Prototypical count Ns like cat and fence-like Ns

Similarities

- (i) direct modification by numerical expressions;
- (ii) pluralization: three cats, three fences;
- (iii) arguments of quantifiers that select for count Ps: each boy, each fence;
- (iv) not bare in argument positions: Kim bought *apple/*fence yesterday.
- (v) aspectual composition: yield complex predicates of quantized sets (accomplishments):
- (a) write a letter [QUANTIZED] → QUANTIZED VP
- (b) write a sequence of numbers [NOT QUANTIZED] \rightarrow QUANTIZED VP

Differences

Measure (aka pseudo-partitive) DPs with extensive measure functions admit *fence*-like Ns, which denote $\neg \text{QUA}(P)$, but not prototypical count Ns, which denote QUA(P):

- (1) (a) ? 6 kilograms of baby
 - (b) ?? You can find a heavy piece of baby in the nursery.
- (2) (a) 3 km of fence, 100 yards of hedge
 - (b) On the other side of town, we saw several more pieces of wall.
 - (c) You can find a great many lengths/stretches of dry stone wall across NE England.

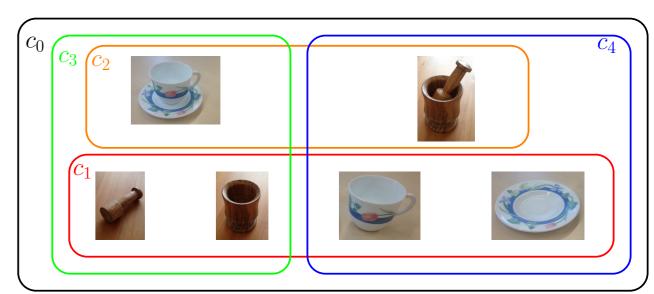
Puzzle for a uniform semantic analysis of count Ns (Rothstein 2010, and also Krifka 1989)

• Why are count nouns like *fence* felicitous in measure (pseudo-partitive) DPs when they pattern, grammatically, with count nouns like *cat* in other contexts?

ANALYSIS

Basic Assumptions

- **Measure Phrases** formed with extensive measure functions that are applied to $\neg QUA(P)$.
- see above **Quantizing Modification** (Krifka (1989))
- -Measure functions ONLY exclude singular QUA(P)s (also Schwarzschild (2002), pace claims in recent unpublished work of Rothstein and Landman that measure functions require 'mess' mass Ps as arguments).
- Null Counting Context c_0 : $X_{c_0} = \bigcup_{c_{i>0}} X_{c_i}$ (Sutton and Filip (2016)).
- The interpretation of a predicate at the null counting context c_0 is the union of the interpretations of that predicate at all specific counting contexts $c_{i>0} \in C$.



- Specific counting contexts are like counting contexts (Rothstein (2010)), or variants (maximally disjoint, hence countable subsets) (Landman (2011)).
- The null counting context allows overlaps among its countable/maximally disjoint subsets.

Lexical Entries for Nouns

- ullet A pair $\langle \mathbf{P}, \mathbf{IND}(\mathbf{P})(c_i) \rangle$
- P: number neutral predicate
- $-IND(P)(c_i)$: the set of P-individuals at counting context of utterance c_i

CONSEQUENCE: Count/mass properties are derived from the disjointness of the IND-set at c_i , rather than being a purely type-based distinction, as in Rothstein (2010).

Count N entries have a counting context argument $c_{i>0}$, meaning that their denotations are evaluated relative to a counting context of utterance that uniquely determines what is 'one'.

cat: $[cat]^{c_i} = \lambda x. \langle CAT(x), IND(CAT)(c_i)(x) \rangle$

- ullet The IND-set for CAT is disjoint (and hence quantized) at every specific counting context $c_{i>0}$
- Grammatically count.
- Captures the context-independence of its inherent criterion of individuation
- Prototypical count Ns (cat) are also quantized at c_0
- The set of single cats is the same disjoint set at all counting contexts, hence also disjoint at the null counting context

fence: [fence] $^{c_i} = \lambda x. \langle \mathsf{FENCE}(x), \mathsf{IND}(\mathsf{FENCE})(c_i)(x) \rangle$

- IND-set for FENCE is disjoint (so quantized) at every specific counting context $c_{i>0}$ makes *fence* grammatically count
- ullet BUT: the IND-set for FENCE overlapping at the null counting context c_0
- Lexically does not uniquely determine its criterion of individuation
- Fence-like Ns are not quantized: fences at some specific counting contexts are proper parts of fences at other specific counting contexts
- Hence both parts and sums are fences at the null counting context
- This makes *fence* grammatically measurable, but *cat* infelicitous in in a pseudo-partitive (measure) DP

Mass N entries are saturated with the null counting context c_0

• Substance Ns are not inherently individuated. IND-sets for substance Ns reflect a simultaneous multiplicity of individuation schemas.

 $\textit{water:} \ [\![\mathsf{water}]\!]^{c_i} = \lambda x. \langle \mathsf{WATER}(x), \mathsf{IND}(\mathsf{WATER})(c_0)(x) \rangle$

• The counting base for WATER is overlapping at all counting contexts, and so, not quantized – This makes *water* grammatically mass, and felicitous in a measure phrase

Measure Phrases

- Apply extensive measure function to the counting base of the argument predicate
- Also saturate the base with the null counting context

 $\textit{meter:} \ [\![\mathsf{meter}]\!]^{c_i} = \lambda n. \lambda P._{\langle e, \langle t \times t \rangle \rangle} \lambda x. \langle \pi_1(P)(x), \mu_{\mathsf{meter}}(\pi_2(P)(c_0)(x)) = n \rangle$

- A function from a numeral to a function from an N predicate to a predicate for a measure DP.
- $-\pi_1$, π_2 such that if $X: \langle a \times b \rangle$, then $\pi_1(X): a$ and $\pi_2(X): b$
- Interpretable only if the counting base of the resulting expression is not quantized

[two meters of cat]] $= \lambda x. \langle \mathsf{CAT}(x), \mu_{\mathsf{meter}}(\mathbf{IND}(\mathsf{CAT})(c_0)(x)) = 2 \rangle$ Not Interpretable! [two meters of fence]] $= \lambda x. \langle \mathsf{FENCE}(x), \mu_{\mathsf{meter}}(\mathbf{IND}(\mathsf{FENCE})(c_0)(x)) = 2 \rangle$ [two meters of water]] $= \lambda x. \langle \mathsf{WATER}(x), \mu_{\mathsf{meter}}(\mathbf{IND}(\mathsf{WATER})(c_0)(x)) = 2 \rangle$

• $\mathbf{IND}(\mathsf{CAT})(c_0)$ is quantized, but $\mathbf{IND}(\mathsf{FENCE})(c_0)$ and $\mathsf{WATER})(c_0)$ are NOT quantized

- Hence, *fence*-like Ns are felicitous in measure phrase DPs. In summary:

	Measure phrase and QUA (P) at the null counting context c_0			
	Cumulative	Quantized at $c_{i>0}$	Quantized at c_0	Felicitous in a
				measure phrase
cat	No	Yes	Yes	No
fence	No	Yes	No	Yes
water	Yes	No	No	Yes

CONCLUSIONS

- Why do we find NL predicates that are $\neg QUA(P)$, and also $\neg CUM(P)$?
- Because they admit a multiplicity of contextually determined disjoint individuation schemas.
- ullet Consequence: An explanation for the admissibility of count P's as arguments of measure phrases.

Selected References

Krifka, M. (1989). Nominal reference, temporal constitution and quantification in event semantics. In Bartsch, R., van Benthem, J. F. A. K., and van Emde Boas, P., editors, *Semantics and Contextual Expression*, pages 75–115. Foris Publications.

Krifka, M. (2007). Masses and countables: Cognitive and linguistic factors. CASTL Workshop, "The Syntax and Semantics of Measurement" University of Tromsø

Landman, F. (2011). Count Nouns–Mass Nouns–Neat Nouns–Mess nouns. *The Baltic International Yearbook of Cognition*, 6:1–67. Rothstein, S. (2010). Counting and the mass/count distinction. *Journal of Semantics*, 27(3):343–397.

Schwarzschild, R. (2002). The grammar of measurement. *Proceedings of SALT*, 12:225–245.

Sutton, P. and Filip, H. (2016). Counting in context: count/mass variation and restrictions on coercion in collective artifact nouns. *Semantics and Linguistic Theory*, 26(0):350–370.