
Language modeling with tree-adjoining grammars
Day1: Introduction to TAG

Kata Balogh & Simon Petitjean

University of Düsseldorf

NASSLLI 2018

SFB 991

What this course is about

Language modeling with Tree-Adjoining Grammars

language modeling→ trying to implement syntactic theories
I implement1: general concepts→ mathematical objects
I implement2: paper & pencil→ electronic resource

Why implementation?

As is frequently pointed out but cannot be overemphasized, an important goal
of formalization in linguistics is to enable subsequent researchers to see the
defects of an analysis as clearly as its merits; only then can progress be made
e�iciently. [Dowty 1979:322)]

I incentive for rigor
I check for consistency
I applications (→ NLP)

Balogh & Petitjean (HHU Düsseldorf) 2 2 / 27

What this course is not about

Details of . . .

formal language theory

parsing with mildly context-sensitive formalisms
(LCFRS, 2-MCFG, 2-ACG) [Kallmeyer 2010]

. . .However, this is highly relevant for motivating TAG!

complexity of a language
⇒ determined by the weakest formal grammar that generates it

expressive power of the formalism
⇒ TAG: The formalism is part of the theory, so let’s try to make it both

convenient and minimally expressive!

Balogh & Petitjean (HHU Düsseldorf) 3 3 / 27

Why working with TAG? (in a nutshell)

formal complexity of natural languages→ gain insights into
⇒ the general structure of natural language
⇒ the general human language capacity
⇒ the adequacy of grammar formalisms
⇒ lower bound of the computational complexity of NLP tasks

TAG exactly provides the expressive power needed to treat NL.

TAG: The formalism is part of the theory, so let’s try to make it both conve-
nient and minimally expressive!

Expressive power in terms of a specific generative capacity:

weak generative capacity→ to generate string languages

strong generative capacity→ to generate tree languages

derivational generative capacity

Balogh & Petitjean (HHU Düsseldorf) 4 4 / 27

Why working with TAG? (some linguistic reasons)

extended domain of locality
S

NP VP

V

repaired

NP

long-distance dependencies / discontinuous constituents

(1) Who did Mary say that Tom claimed . . . repaired the fridge?

multi-word expressions

(2) to kick the bucket (‘to die’)

Balogh & Petitjean (HHU Düsseldorf) 5 5 / 27

Schedule

Day 1: Motivation and the basic TAG

Day 2: Linguistic applications and using LTAG: syntax

Day 3: Linguistic applications and using LTAG: semantics

Day 4: Grammar implementation with XMG

Day 5: Parsing TAG

lecturers:
I Kata Balogh (Katalin.Balogh@hhu.de)
I Simon Petitjean (petitjean@phil.hhu.de)

course page:
I https://tinyurl.com/ycwje6ma

Balogh & Petitjean (HHU Düsseldorf) 6 6 / 27

https://tinyurl.com/ycwje6ma

From CFG to TAG

Grammar Formalisms

aim: find an adequate formal system for natural language analysis
I mathematically concise representation of a grammar theory
I a formal system for linguistic analyses

HPSG, TG, TM af (n)

LFG, LBA a2n
, anbncn. . . , W k

TAG, EPDA anbmcndm, WW

CFG, PDA anbmcmdn, WW R

FSA anbmckd l

type 3: regular

type 2: context-free

type 1: context-sensitive

mildly context-sensitive

type 0: recursively enumerable theory of formal languages
(Chomsky-hierarchy)
I finite-state models
⇒ not plausible enough

I context-free grammars
⇒ almost plausible, just not
enough

Balogh & Petitjean (HHU Düsseldorf) 7 7 / 27

Chomsky-hierarchy

A grammar (N , T , S,R) is a

Type 0 or unrestricted (phrase structure) grammar i� every production is of
the form α → β with α ∈ (N ∪ T)∗ \ T ∗ and β ∈ (N ∪ T)∗;
generates a recursively enumerable language (RE).

Type 1 or context-sensitive grammar i� every production is of the form
γAδ → γ βδ with γ ,δ , β ∈ (N ∪ T)∗,A ∈ N and β , ϵ;
generates a context-sensitive language (CS).

Type 2 or context-free grammar i� every production is of the form
A→ β with A ∈ N and β ∈ (N ∪ T)∗ \ {ϵ};
generates a context-free language (CF).

Type 3 or right-linear grammar i� every production is of the form
A→ βB or A→ β with A,B ∈ N and β ∈ T ∗ \ {ϵ};
generates a regular language (REG).

For Type 1-3 languages a rule S → ϵ is allowed if S does not occur in any rule’s
right-hand side.

Balogh & Petitjean (HHU Düsseldorf) 8 8 / 27

Chomsky-hierarchy: overview

type grammar rules word problem

RE phrase structure α → β undecidable

CS context-sensitive γAδ → γ βδ exponential

CF context-free A→ β cubic

REG right-linear A→ aB|b linear

Languages as problems:
“Can we decide for every word whether it belongs to L?”

Balogh & Petitjean (HHU Düsseldorf) 9 9 / 27

Limits of CFG

for natural languages context-free grammars are just not ‘enough’
I expressivity challenge: cannot describe all NL phenomena

F cross-serial dependencies (anbmcndm); Schwyzerdütsch
F duplication (yy); Bambara (spoken in Mali)
F multiple agreement (anbncn); Bantu languages

I low descriptive power: problems with certain linguistic phenomena
e.g. subcategorization, number agreement, case marking

I only weak-lexicalization possible

natural languages are almost context-free

mildly context sensitive languages
RL ⊂ CFL ⊂ MCSL ⊂ CSL ⊂ RE

[Joshi, 1985]

for natural languages we need grammars, that are somewhat richer
than context-free grammars, but more restricted than context-sensitive
grammars

Balogh & Petitjean (HHU Düsseldorf) 10 10 / 27

Limits of CFG: expressivity challenge

German: nested dependency (subordinate clauses)

(3) er
he

die
the

Kinder
children

dem
the

Hans
Hans

das
the

Haus
house

streichen
paint

helfen
help

ließ.
let.

‘(that) he let the children to help Hans to paint the house.’

n1 n2 n3 v3 v2 v1

Schwyzerdütsch: cross-serial dependency

(4) mer
we

d’chind
children.acc

em
the

Hans
Hans.dat

es
the

huus
house.acc

lönd
let

hälfe
help

aastriiche.
paint.

‘(that) we let the children to help Hans to paint the house.’

n1 n2 n3 v1 v2 v3

(5) *mer
we

d’chind
children.acc

de
the

Hans
Hans.acc

es
the

huus
house.acc

lönd
let

hälfe
help

aastriiche.
paint.

Balogh & Petitjean (HHU Düsseldorf) 11 11 / 27

Limits of CFG: expressivity challenge

Proof by Schieber

Jan säit das mer d’chind em Hans es huus lönd hälfe aastriiche.

homomorphism f :

f (d’chind) = a f (em Hans) = b f (laa) = c
f (hlfe) = d f (aastriiche) = y f (es huus haend wele) = x
f (Jan sit das mer) = w f (s) = z otherwise

f (Schwyzerdütsch) ∩ wa∗b∗xc∗d∗y = wambnxcmdny
I CFLs are closed under intersection with regular languages: L1CF∩L2REG =

L3CF
I wa∗b∗xc∗d∗y is regular
I by Pumping Lemma: wambnxcmdny is not context-free

⇒ Schwyzerdütsch is not context-free

Balogh & Petitjean (HHU Düsseldorf) 12 12 / 27

Limits of CFG: low descriptive power

take a simple CFG
I string rewriting
I replace non-terminals by strings of terminals and non-terminals

GCFG = 〈N , T , S, P〉
P = {

S → NP VP
VP → V NP | V
V → likes | like | sleeps
NP → she | her | they

}

Example derivations:
S→ NP VP → she VP → she V → she sleeps
S → NP VP → they VP → they V NP →
they like NP → they like her

Example derivation history:

S

NP

she

VP

sleeps

S

NP

they

VP

V

like

NP

her

Balogh & Petitjean (HHU Düsseldorf) 13 13 / 27

Limits of CFG: low descriptive power

subcategorization / argument selection
(1) She sleeps. / She likes her. / *She likes.

S⇒ NP VP⇒ Joe VP⇒ Joe V⇒ Joe sleeps
S⇒ NP VP⇒ Joe VP⇒ Joe V⇒ Joe likes

number agreement
(2) They like her. / *They likes her.

case marking
(3) She likes her. / *She likes they.

encode necessary information in the non-terminals?

Balogh & Petitjean (HHU Düsseldorf) 14 14 / 27

Limits of CFG: low descriptive power

extend for number agreement, argument selection (transitive vs. non-
transitive) and case marking

S→ NP3sg/nom VP3sg/itr , S→ NP3pl/nom VP3pl/itr ,
S→ NP3sg/nom VP3sg/tr , S→ NP3pl/nom VP3pl/tr ,
VP3sg/tr→ V3sg/tr NP3sg/acc , VP3pl/tr→ V3pl/tr NP3sg/acc ,
VP3sg/itr → V3sg/itr , VP3pl/itr → V3pl/itr ,
NP3sg/nom→ she, NP3sg/acc → her, NP3pl/nom→ policemen,
V3sg/itr → sleeps, V3pl/itr → sleep, V3sg/tr → likes, V3pl/tr → like

every possible combination of arguments selection (e.g. transitive/non-
transitive), number agreement and case marking must have a separate
non-terminal and a separate re-write rule

grammar writing is quite error prone (and boring)
linguistic generalizations are di�icult to express, e.g.
I subject and verb must have the same number
I the object of a transitive verb must be in accusative case

solution: feature structures, unification, underspecification (see later)

Balogh & Petitjean (HHU Düsseldorf) 15 15 / 27

Lexicalization

Lexicalized grammar
A lexicalized grammar consists of:

(i) a finite set of structures each associated with a lexical item (anchor),
(ii) operation(s) for composing these structures.

Lexicalization
A formalism F can be lexicalized by another formalism F ′,
if for any finitely ambiguous grammar G in F there is a grammar G′ in F ′,
such that (i) G′ is a lexicalized grammar; and

(ii) G and G′ generate the same set.

weak vs. strong lexicalization

weak lexicalization: preserve the string language

strong lexicalization: preserve the tree structure

Balogh & Petitjean (HHU Düsseldorf) 16 16 / 27

Limits of CFG: lexicalization

Formally interesting:
I a finite lexicalized grammar provides finitely many analyses for each

string (finitely ambiguous)

Linguistically interesting:
I syntactic properties of lexical items can be accounted for more directly
I each lexical item comes with the possibility of certain partial syntactic

constructions

Computationally interesting:
I the search space during parsing can be delimited (grammar filtering)
I use of corpora in NLP

Balogh & Petitjean (HHU Düsseldorf) 17 17 / 27

Lexicalization of CFG’s

lexicalize CFGs:
I recursive (X ⇒∗ X) and elementary (X → X) rules are disallowed
I each rule must consist at least one terminal on the RHS

lexicalized CFG{ e.g. Greibach normal-form: A→ aX or A→ a
(a ∈ VT ; A ∈ VN ; X ∈ (VN)

∗) [Greibach, 1965]

example:
I a CFG G: S → SS, S → a
I lexicalize G ⇒ G′: S → aS, S → a

same string language, but not the same tree set

only weak lexicalization possible

Balogh & Petitjean (HHU Düsseldorf) 18 18 / 27

Lexicalization of CFG’s

take the following (very simple) CFG
G = { S→ NP VP VP→ really VP NP→ Joe

VP→ V NP V→ likes NP→ Cleo }

step 1: take trees as elementary structures
S

NP VP

VP

V NP

VP

really VP

V

likes

NP

Pim

V

Mia

step 2: combine the elementary structures
⇒ lexical items appear as part of the elementary structures

S

NP VP

+
VP

V NP

+
V

likes

⇒

S

NP VP

V

likes

NP

Balogh & Petitjean (HHU Düsseldorf) 19 19 / 27

Tree Substitution Grammar (TSG)

a CFG rule corresponds to a tree
I lhs as the root node / rhs as the daughter nodes
I e.g. S→ NP VP

tree rewriting

substitution: replace a non-terminal leaf with a tree

grammar on trees + substitution→ Tree Substitution Grammar
A TSG is a quadruple TSG = 〈Σ,NT , I, S〉, where

Σ is a set of terminal symbols;
NT is a set of non-terminal symbols;
S ∈ NT is a distinguished non-terminal symbol;
I is a finite set of initial trees.

Balogh & Petitjean (HHU Düsseldorf) 20 20 / 27

From CFG to TAG: Tree Substitution Grammar

GCFG = 〈N , T , S, P〉
P = {

S → NP VP

VP → V NP | AP VP

NP → N | Det N

AP → A

N → Peter | fridge

Det → the

A→ easily

V → repaired

}

≈

GTSG = 〈N , T , S, I〉
I = {

S

NP VP

VP

V NP

VP

AP VP

NP

N

NP

Det N

AP

A

A

easily

N

Peter

N

fridge

Det

the

V

repaired

}

Balogh & Petitjean (HHU Düsseldorf) 21 21 / 27

From CFG to TAG: Tree Substitution Grammar

GTSG = 〈N , T , S, I〉
I = {

S

NP VP

VP

V NP

VP

AP VP

NP

N

NP

Det N

AP

A

A

easily

N

Peter

N

fridge

Det

the

V

repaired

}

Example derivation:
S

NP

N

Peter

VP

AP

A

easily

VP

V

repaired

NP

Det

the

N

fridge

Lexicalize this TSG!

Balogh & Petitjean (HHU Düsseldorf) 22 22 / 27

TSG + Adjunction

lexicalization of CFG in a linguistically meaningful way

TSG: still no strong lexicalization of CFG, no cross-serial dependencies
etc.

add adjunction:
I replace a non-terminal node with an “auxiliary” tree
I put the subtree of the replaced node under the footnode (*)

VP

AP

A

easily

VP*

S

NP VP

V

repaired

NP

⇒

S

NP VP

AP

A

easily

VP

V

repaired

NP

Balogh & Petitjean (HHU Düsseldorf) 23 23 / 27

TSG + Adjunction

⇒ Adjunction at footnodes causes spurious ambiguities in derivations.

⇒ Therefore, this is usually forbidden.

VP

AP

A

easily

VP*

VP

AP

A

easily

VP*
⇒

VP

AP

A

easily

VP

AP

A

easily

VP*

Balogh & Petitjean (HHU Düsseldorf) 24 24 / 27

From CFG to TAG: Example with adjunction

tree rewriting

Substitution: replace a non-terminal leaf with a tree

Adjunction: replace a non-terminal node with an “auxiliary” tree

GTSG = 〈N , T , S, I〉
I = {

S

NP VP

VP

V NP

VP

AP VP

NP

N

NP

Det N

AP

A

A

easily

N

Peter

N

fridge

Det

the

V

repaired

}

≈

S

NP VP

repaired NP

VP

AP

A

easily

VP*

NP

N

Peter

NP

Det N

fridge

Det

the

S

NP VP

V

repaired

NP

VP

AP

A

easily

VP*

NP

N

Peter

NP

Det N

fridge

Det

the

Example derivation:

S

NP VP

V

repaired

NP

S

NP

N

Peter

VP

V

repaired

NP

S

NP

N

Peter

VP

AP

A

easily

VP

V

repaired

NP

S

NP

N

Peter

VP

AP

A

easily

VP

V

repaired

NP

Det N

fridge

S

NP

N

Peter

VP

AP

A

easily

VP

V

repaired

NP

Det

the

N

fridge

Balogh & Petitjean (HHU Düsseldorf) 25 25 / 27

From CFG to TAG: Restrictions on adjunction (I)

Restrictions on the shape of auxiliary trees:

The root node and the footnode must carry the same non-terminal.

Specific adjunction constraints on target nodes:

obligatory adjunction (OA): true/false

null adjunction (NA): no adjoinable auxiliary tree

selective adjunction (SA): a nonempty set of adjoinable auxiliary trees

Adjunction constraints are essential in generating non-context-free languages (e.g.
the copy language {ww |w ∈ {a, b}∗})!

Balogh & Petitjean (HHU Düsseldorf) 26 26 / 27

From CFG to TAG: Restrictions on adjunction (I)

Example grammar for the copy language {ww |w ∈ {a, b}∗}:

S

ε

SNA

a S

S*NA a

SNA

b S

S*NA b

Example derivation of abbabb:
SNA

a SNA

b SNA

b S

SNA

SNA

SNA

ε

a

b

b

⇒ TAG = TSG + adjunction + adjunction constraints

Balogh & Petitjean (HHU Düsseldorf) 27 27 / 27

