
Language modeling with tree-adjoining grammars
Day0

Kata Balogh & Simon Petitjean

University of Düsseldorf

NASSLLI 2018

SFB 991

Formal complexity of natural languages

computational complexity

structural complexity

Structural complexity
Natural languages are modeled as abstract symbol systems with con-
struction rules.

�estions about the grammaticality of natural sentences correspond
to questions about the syntactic correctness of programs or about the
well-formedness of logic expressions.

What a grammar theory has to explain:
The number of grammatical sentences is small compared to all possible word
sequences.

Balogh & Petitjean (HHU Düsseldorf) 2 2 / 25

How complex are English sentences?

(1) Anne sees Peter.

Anne sees Peter in the garden with the binoculars.

Anne who dances sees Peter whom she met yesterday in the garden
with the binoculars.

Anne sees Peter and Hans and Sabine and Joachim and Elfriede and
Johanna and Maria and Jochen and Thomas and Andrea.

The length of a sentence influences the processing complexity, but it is not a
sign of structural complexity!

Balogh & Petitjean (HHU Düsseldorf) 3 3 / 25

Natural Language Theories vs. Formal Language Theory

Natural Language Theories
grammar theories

explain natural language data

are language specific (Latvian, German, . . .)

Formal Language Theory
a theory about the structure of symbol strings

not language specific

allows statements about the mechanisms for generating and recogniz-
ing sets of symbol strings

Balogh & Petitjean (HHU Düsseldorf) 4 4 / 25

Natural Languages and Formal Languages

Generative Grammar (linguistics): from a finite number of words +
finite number of rules→ infinite number of sentences
Standard (GG) Assumptions: (about any natural language)
I The length of any sentence is finite. (whether le�ers, phonemes, mor-

phemes, or words)
I There is no longest sentence. (because of recursion)

from these two assumptions it follows that the cardinality of the set of
sentences in any natural language is infinite

Balogh & Petitjean (HHU Düsseldorf) 5 5 / 25

Natural Languages and Formal Languages

modeling any natural language as a set of strings (made of words,
morphemes etc.)

the set of possible strings formed from a vocabulary can be grammati-
cal or ungrammatical

language: the set of all grammatical strings

grammar: determines the set of all grammatical strings

Balogh & Petitjean (HHU Düsseldorf) 6 6 / 25

Grammars

Grammar
A formal grammar is a generating device which can generate (and
analyze) strings/words.

Grammars are finite rule systems.

The set of all strings generated by a grammar is a formal language
(= generated language).

Example grammar:

S→ NP VP, VP→ V, NP→ DET N, NP→ PN,
DET→ the, N→ cat, V→ sleeps, PN→ Mia

generates the sentences (strings of words):

the cat sleeps, Mia sleeps

Balogh & Petitjean (HHU Düsseldorf) 7 7 / 25

Automata

Automaton
An automaton is a recognizing device which accepts strings/words.

The set of all strings accepted by an automaton is a formal language
(= accepted language).

q0start q1 q2
a

b

a

⇒ accepts strings: aa, aba, abba, abbba, ab4a, ab5a, ...etc.
⇒ accepts the language L(ab?a)

Balogh & Petitjean (HHU Düsseldorf) 8 8 / 25

Formal grammar

A formal grammar is a 4-tuple G = (N , T , S,R) with

an alphabet of nonterminals N ,

an alphabet of terminals T with N ∩ T = ∅,

a start symbol S ∈ N ,

a finite set of rules/productions
R ⊆ {〈α , β〉 | α , β ∈ (N)∗ and α < T ∗}.

Instead of 〈α , β〉 we o�en write α → β .

Balogh & Petitjean (HHU Düsseldorf) 9 9 / 25

Formal grammar

Let G = (N , T , S,R) be a grammar and v,w ∈ (T ∪ N)∗:

v is directly derived from w (or w directly generates v), w ⇒ v if
w = w1αw2 and v = w1βw2 such that 〈α , β〉 ∈ R

v is derived from w (or w generates v), w ⇒∗ v
if there exists w0,w1, . . .wk ∈ (T ∪ N)∗ (k ≥ 0)
such that w = w0, wk = v and wi−1 ⇒ wi for all k ≥ i ≥ 0

⇒∗ denotes the reflexive, transitive closure of⇒

L(G) = {w ∈ T ∗ |S ⇒∗ w} is the formal language generated by the
grammar G
Two grammars G1 and G2 are weakly equivalent if and only if (i�)
they generate the same language, i.e. L(G1) = L(G2).

Balogh & Petitjean (HHU Düsseldorf) 10 10 / 25

Chomsky-hierarchy

The Chomsky-hierarchy is a hierarchy over structure conditions on the pro-
ductions.

Constraining the structure of the productions results in a restricted set of
languages.

The language classes correspond to conditions on the right- and le�-hand
sides of the productions.

The Chomsky-hierarchy reflects a special form of complexity, other criteria
are possible and result in di�erent hierarchies.

Linguists benefit from the rule-focussed definition of the Chomsky-hierarchy.

Balogh & Petitjean (HHU Düsseldorf) 11 11 / 25

Chomsky-hierarchy

A grammar (N , T , S,R) is a

Type 0 or unrestricted (phrase structure) grammar i� every production is of
the form α → β with α ∈ (N ∪ T)∗ \ T ∗ and β ∈ (N ∪ T)∗;
generates a recursively enumerable language (RE).

Type 1 or context-sensitive grammar i� every production is of the form
γAδ → γ βδ with γ ,δ , β ∈ (N ∪ T)∗,A ∈ N and β , ϵ;
generates a context-sensitive language (CS).

Type 2 or context-free grammar i� every production is of the form
A→ β with A ∈ N and β ∈ (N ∪ T)∗ \ {ϵ};
generates a context-free language (CF).

Type 3 or right-linear grammar i� every production is of the form
A→ βB or A→ β with A,B ∈ N and β ∈ T ∗ \ {ϵ};
generates a regular language (REG).

For Type 1-3 languages a rule S → ϵ is allowed if S does not occur in any rule’s
right-hand side.

Balogh & Petitjean (HHU Düsseldorf) 12 12 / 25

Chomsky-hierarchy

HPSG, TG, TM af (n)

LFG, LBA a2n , anbncn. . . , W k

CFG, PDA anbmcmdn, WWR

FSA anbmckd l

type 3: regular

type 2: context-free

type 1: context-sensitive

type 0: recursively enumerable

Balogh & Petitjean (HHU Düsseldorf) 13 13 / 25

Chomsky-hierarchy: overview

type grammar rules machine word problem

RE unrestricted α → β TM undecidable
CS context-sensitive γAδ → γ βδ LBA exponential
CF context-free A→ β PDA cubic
REG right-linear A→ aB|b FSA linear

TM: Turing machine
LBA: linerar bounde automaton (a restricted TM)
PDA: push-down automaton
FSA: finite-state automaton

Balogh & Petitjean (HHU Düsseldorf) 14 14 / 25

Natural Language is not regular

Hypothesis
All natural languages can be accepted by a finite state automaton (FSA).

FSA:

finite set of states (including one start state and at least one end state)

finite set of transitions between states

On every transition, a word is read from the input.

qa qb qc qd qe
the|a|one

happy

boy|girl|dog eats candies

Potential problems: recursion, constituency, long-distance dependencies
. . .whenever we might need a storage.

How to proof the inadequacy of FSA on the level of string languages?

Balogh & Petitjean (HHU Düsseldorf) 15 15 / 25

Natural Language is not regular

The case of nested dependency: [Chomsky 1957]

a woman hired another woman
a woman whom another woman hired hired another woman
a woman whom another woman whom another woman hired hired hired
another woman

Formal proof by contradiction (using closure properties and the Pumping
Lemma):

Every regular language satisfies the Pumping Lemma, hence the
pa�ern wanz .
homomorphism f : f (a woman) = w , f (whom another woman) = a,
f (hired) = b, f (hired another woman) = z
I wa∗b∗z is a regular language; and
I f(English) ∩ wa∗b∗z = wanbnz should be regular as well.

wanbnz contradicts the Pumping Lemma for regular languages.
⇒ English is not regular!

Balogh & Petitjean (HHU Düsseldorf) 16 16 / 25

Natural Language is not context-free

a long time debate about the context-freeness of natural languages

Chomsky 1957:34
“Of course there are languages (in our general sense) that cannot be described in terms of
phrase structure, but I do not know whether or not English is itself literally outside the
range of such analysis.”

several wrong arguments (see Pullum & Gazdar 1982), e.g.:

Bresnan 1978:37–38
“in many cases the number of a verb agrees with that of a noun phrase at some distance
from it ... this type of syntactic dependency can extend as memory or patience permits ...
the distant type of agreement ... cannot be adequately described even by context-sensitive
phrase-structure rules, for the possible context is not correctly describable as a finite string
of phrases."

right proof techniques: pumping lemma and closure properties

What is a non context-free phenomenon in natural languages?
Balogh & Petitjean (HHU Düsseldorf) 17 17 / 25

Natural Language is not context-free

A serious try: Syntax of Dutch [Bresnan et al. 1982]

(2) dat

that

Jan

Jan

Piet

Piet

de

the

kinderen

children

zag

saw

helpen

help

zwemmen.

swim

‘that Jan saw Piet helping the children to swim.’

Linguistic dependencies are cross-serial:

n1 n2 n3 v1 v2 v3

However: No reflection on the surface, i. e. in the string language!

⇒ In principle the string can be generated by a CFG, even though the dependen-
cies will get lost.

n1 n2 n3 v1 v2 v3

Balogh & Petitjean (HHU Düsseldorf) 18 18 / 25

Natural Language is not context-free

Another try by Culy (1985): Duplication in the morphology of Bambara

wulu ‘dog’
wulu-lela ‘dog watcher’
wulu-lela-nyinila ‘dog watcher hunter’
wulu-o-wulu ‘whatever dog’
wulu-lela-o-wulu-lela ‘whatever dog watcher’
wulu-lela-nyinila-o-wulu-lela-nyinila ‘whatever dog watcher hunter’

Pa�ern: anbmanbm or ww (copy language)⇒ not context-free!

Balogh & Petitjean (HHU Düsseldorf) 19 19 / 25

Natural Language is not context-free

German: nested dependency (subordinate clauses)

(3) (dass)

(that)

er

he

die

the

Kinder

children

dem

the

Hans

Hans

das

the

Haus

house

streichen

paint

helfen

help

ließ

let

‘(that) he let the children help Hans paint the house’

n1 n2 n3 v3 v2 v1

Schwyzerdütsch: cross-serial dependency

(4) . . .mer

. . .we

d’chind

children.acc

em

the

Hans

Hans.dat

es

the

huus

house.acc

lönd

let

hälfe

help

aastriiche

paint

‘. . . we let the children help Hans paint the house’

n1 n2 n3 v1 v2 v3

Balogh & Petitjean (HHU Düsseldorf) 20 20 / 25

Natural Language is not context-free

Proof by Shieber (1985):

(5) Jan säit das mer d’chind em Hans es huus lönd hälfe aastriiche.

homomorphism f :

f (d’chind) = a f (em Hans) = b f (lönd) = c f (hälfe) = d
f (Jan säit das mer) = w f (es huus) = x f (aastriiche) = y
f (s) = z

f (Schwyzerdütsch) ∩ wa∗b∗xc∗d∗y = wambnxcmdny

I CF languages are closed under intersection with regular languages
I wa∗b∗xc∗d∗y is regular
I by Pumping Lemma: wambnxcmdny is not regular

⇒ Schwyzerdütsch is not context-free

Balogh & Petitjean (HHU Düsseldorf) 21 21 / 25

Mildly context sensitive languages

NL is not mildly context-sensitive?

1. A set L of languages is mildly context-sensitive i�

a. L contains all context-free languages
b. L can describe cross-serial dependencies: there is an n ≥ 2 such that {wk | w ∈
(VT)∗} ∈ L for all k ≥ n

c. the languages in L are polynomially parseable, i.e., L ⊂ PTIME
d. the languages in L have the constant growth property

2. A formalism F is mildly context-sensitive i� the set {L | L = L(G) for some
G ∈ F } is mildly context-sensitive.

constant growth property: if we order the words of a language accord-
ing to their length, then the length grows in a linear way

there is a finite figure n, that limits the maximum number of instantia-
tions of cross serial dependencies in a sentence of L

Balogh & Petitjean (HHU Düsseldorf) 22 22 / 25

NL is not mildly context-sensitive?

Evidence brought forward against semi-linearity:

case stacking (“Su�ixaufnahme”) in Old Georgian
[Michaelis & Kracht 1997]

Chinese number-names [Radzinski 1991]

coordination in Dutch [Groenink 1997]

relativized predicates in Yoruba [Kobele 2006]

Balogh & Petitjean (HHU Düsseldorf) 23 23 / 25

Indexed Grammar (IG)

Indexed Grammar (IG): [Aho 1968]

IG = 〈T ,N , I, S,R〉, where I = a set of indices

I context-free rules extended with indices⇒ a kind of stack
I indices can appear only on non-terminals, e.g. A[ijkiij]
I adding or removing indices on the right-hand side of the rule
I the index-string can be infinite long

two kinds of rules in R:

(i) “push and copy”: A[..] → B[i..] e.g. ...A[jk]...⇒ ...B[ijk]...
(ii) “pop and copy”: A[i..] → B[..] e.g. ...A[ijk]...⇒ ...B[jk]...

Linear Indexed Grammar (LIG): [Gazdar 1988]
The stack may be copied to at most one non-terminal per rule.

A[..] → B[..]C[..]

Balogh & Petitjean (HHU Düsseldorf) 24 24 / 25

Indexed Grammar (IG)

LIG for the language anbncn:

G = 〈T ,N , I, S,R〉, where

T = {a, b, c}, N = {S,Q}, I = {i}
R = { S[..] → aS[i..]c, S[..] → Q[..],
R = { Q[i..] → Q[..]b, Q[] → ϵ }

example derivation:

I S[] ⇒ aS[i]c ⇒ aaS[ii]cc ⇒ aaaS[iii]ccc ⇒ aaaQ[iii]ccc ⇒
aaaQ[ii]bccc ⇒ aaaQ[i]bbccc ⇒ aaaQ[]bbbccc ⇒ aaabbbccc

I S[]
∗
⇒ anQ[in]cn

∗
⇒ anbncn

LIG for the language {ww |w ∈ {a, b}∗}:

Try yourself!

Balogh & Petitjean (HHU Düsseldorf) 25 25 / 25

