Developing an argument annotation scheme based on a semantic classification of arguments

Lea Kawaletz¹, Heidrun Dorgeloh¹, Stefan Conrad² and Zeljko Bekcic²

¹Department of English and American Studies, ²Department of Computer Science, HHU Düsseldorf, Germany

Arguments

Arguments are functionally complex

- Argument components (e.g. Stab and Gurevych 2014)
- **Claim**: Controversial statement, provides the topic of the argument
- **Premise**: Supports or attacks the claim by providing evidence or expressing reasoning

The problem

Argument identification is hard

- Argumentation is often not straighforward
 - Arguments are linguistically variable (e.g. Dorgeloh and Wanner 2010)
 - A lot of information is implicit (e.g. Moens 2018)

polarityepistemicethicaldeonticpositivex is truex is gooddo xnegativex is falsex is baddon't do x

The overall goal

- Create an annotated inventory of arguments
- \rightarrow Linguistic & computational experiments
- \rightarrow Enrich discourse and genre theory & improve machine learning

Even trained annotators have a hard time identifying claims and premises
 Argument mining approaches typically rely on recurrent patterns

The idea

● Utilize functional complexity of argumentation
 → Operationalize the annotation scheme by using semantic templates
 → Develop a topic-independent classification scheme

The annotation scheme

We have developed a repository of semantic templates

category	positive claim	negative claim
epistemic		
support	and this is true because	and this is false because
attack	but this is not true because	but this is not false because
ethical		
support	and this is good because	and this is bad because

Results

We find a clear trend toward increas-	Annotators report an overall im-
ing inter-annotator agreements	provement of the process

Facilitated argument identification
 Smoother discussions
 Difficult claim classification

Universität Düsseldorf 📄

vidual risk tolerance, but about keeping everyone safe.

Inter-annotator agreements

subset	id	iaa	# of annotators	subset	id	iaa	iaa	# of
1-1	10	0.2713	3			p/c/Ø	p/ep/et/d/Ø	annotators
1-1	11	0.4078	3	2-1	23	0.1811	0.181	4
1-1	12	0.2646	3	2-1	24	0.2809	0.2657	4
1-2	13	0.1932	3	2-2	25	0.0951	0.113	3

Corpus compilation

- COVID-19-related news opinion texts from *The New York Times*Set 1: 13 texts, 15,299 words
 Set 2: 12 texts, 14,167 words
- Total: 25 texts, 29,466 words
- Annotated for argument components (sets 1 & 2) and functions (set 2) using the INCEpTION tool (Klie et al. 2018)
- Monitoring iaa (Krippendorff's unitizing alpha, Krippendorff et al. 2016)

1-2	14 -0.0268	3	2-2	26 0.2516 0.2798	3
1-2	15 0.3851	3	2-2	27 0.5906 0.5953	3
1-2	16 0.3002	3	2-2	28 0.2496 0.2391	3
1-2	17 0.0123	3	2-2	29 0.0446 0.0428	3
1-2	18 0.1705	3	2-2	30 0.2638 0.2623	3
1-2	19 0.0941	3	2-2	31 0.5531 0.5525	3
1-2	20 0.3853	3	2-2	32 0.2046 0.2027	3
1-2	21 0.1891	3	2-2	33 0.5982 0.5829	3
1-2	22 0.0681	3	2-2	34 0.4704 0.4753	3

Next steps

• Refine work flow further \rightarrow Improve iaa, annotator recall & corpus 1 Only editorials

2 Text length 40-70 sentences

OPre-assessment of texts

4 Curation of annotations

Selected references

H. Dorgeloh and A. Wanner, editors. Syntactic Variation and Genre. Number 70 in Topics in English Linguistics. De Gruyter Mouton, Berlin/New York, 2010.

J.-C. Klie, M. Bugert, B. Boullosa, R. E. de Castilho, and I. Gurevych. The INCEpTION platform: Machine-assisted and knowledge-oriented interactive annotation. In *Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations*, pages 5–9. ACL, 2018.

K. Krippendorff, Y. Mathet, S. Bouvry, and A. Widlöcher. On the reliability of unitizing textual continua: Further developments. Quality & Quantity, 50(6):2347–2364, 2016.

M.-F. Moens. Argumentation mining: How can a machine acquire common sense and world knowledge? Argument & Computation, 9(1):1–14, 2018.

C. Stab and I. Gurevych. Annotating argument components and relations in persuasive essays. In Proceedings of COLING 2014, pages 1501–1510, Dublin, 2014. Dublin City University and ACL.