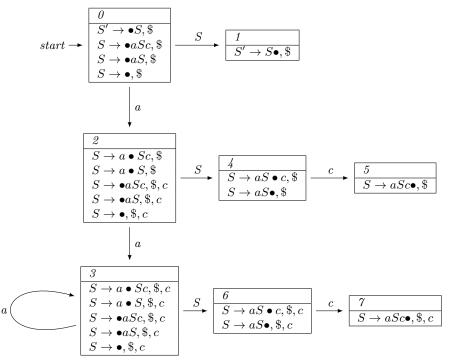
Parsing

Homework 9 (LR), due 22 June 2020

Laura Kallmeyer

SS 2020, Heinrich-Heine-Universität Düsseldorf


Question 1 (Canonical LR(1) construction and parse table)

Consider the CFG G with non-terminals N = {S}, terminals T = {a,b}, start symbol S and productions 1. S → Sa, 2. S → aSb, 3. S → ε.
Consider the canonical LR(1)-construction for this grammar.

(a) How does the state $q_0 = closure(\{S' \to \bullet S\})$ look like?

- (b) Give the state $q_1 = goto state(q_0, a)$.
- (c) What would be the entry of the field for q_0 and a in the LR(1) action table?
- 2. Now consider the CFG $\langle N, T, P, S \rangle$ with

 $N = \{S\}, T = \{a, c\}, start symbol S, and productions 1.S \rightarrow aSc, 2.S \rightarrow aS, 3.S \rightarrow \varepsilon$. The LR(1)-automaton is as follows:

- (a) Give the LALR(1) automaton (states collapse that contain the same dotted productions, and all lookaheads are collected).
- (b) Read off the LALR(1) parse table.

Question 2 (Canonical LR(1) parsing)

Consider the CFG $G_4 = \langle N, T, P, S \rangle$ with $N = \{S, A, B, C\}$, $T = \{a, b, c\}$ and productions $1.S \rightarrow ABC$, $2.A \rightarrow a$, $3.A \rightarrow aC$, $4.B \rightarrow b$, $5.B \rightarrow bC$, $6.C \rightarrow c$.

It's LR(1) parse table with the canonical LR algorithm is as follows:

	a	b	c	\$	A	В	C	S
0	s1				2			3
1		r2 s5	s11				10	
\mathcal{Z}		s5				4		
3				acc				
4			s7				6	
1 2 3 4 5 6 7 8 9			s8, r4				g	
6				r1 r6				
γ				r6				
8			r6 r5					
			r5					
10		r3						
11		r6						

- 1. Is this grammar LR(1)?
- 2. Give the shift-reduce parsing trace (i.e., the sequence of pairs of stack and remaining input) that we obtain for the input w = abcc.

If the parser is not LR(1) and the input cannot be parsed deterministically, list all possibilities.