Parsing

Left-Corner Parsing

Laura Kallmeyer

Heinrich-Heine-Universitit Diisseldorf

Summer 2022

hhu:

1/17

Table of contents

@ Motivation

© Algorithm

© Look-ahead

@ Chart Parsing

2/17

Motivation

Problems with pure TD/BU approaches:

m Top-Down does not check whether the actual input corresponds
to the predictions made.

m Bottom-Up does not check whether the recognized constituents
correspond to anything one might predict starting from S.

Mixed approaches help to overcome these problems:

m Left-Corner Parsing parses parts of the tree top down, parts
bottom-up.

m Earley-Parsing is a chart-based combination of top-down predic-
tions and bottom-up completions.

3/17

Idea

In a production A — X ... Xy, the first righthand side element X is
called the left corner of this production.
Notation: (A, X;) € LC.

Idea:

m Parse the left corner bottom-up while parsing X, . . ., Xj top-
down.

m In other words, in order to predict the subtree A

a parse tree for X; must already be there.

4/17

Algorithm (1)

We assume a CFG without e-productions and without loops.
We need the following three stacks:

m astack I, containing completed elements that can be used as
potential left corners for applying new productions.
Initial value: w

m a stack I';; containing the top-down predicted elements of a rhs
(i.e., the rhs without the left corner)
Initial value: S

m a stack 'y, containing the lhs categories that are waiting to be
completed. Once all the top-down predicted rhs symbols are
completed, the category is moved to I oy
Initial value:

5/17

Algorithm (2)

Item form [Icompt, I'ia, Tins| with

[Fcompl S (N U T)*,

m 'y € (NUTU{$})* where $ is a new symbol marking the end
of a rhs,

m 'y, € N
Whenever the symbols X, . . ., X from a rhs are pushed onto I',;, they

are preceded by $ to mark the end of a rhs (i.e., the point where a
category can be completed).

Axtom: e

6/17

Algorithm (3)

Reduce can be applied if the top of I'¢,,; is the left corner X of some
rule A — XX, ... X;. Then X; is popped, X5 . .. X;$ is pushed onto
I';; and A is pushed onto I'j:

[X\c, BB,]

A—=XX>...X; €P,B
[0, X5 ... Xc$BB, A X2 X €P, B #§

Reduce:

Once the entire righthand side has been completed (top of I';; is $), the
completed category is moved from I'js t0 I'copmpi:

[, 88, Ay

A, B, 7] AeN

Move:

7/17

Algorithm (4)

A completed category can be a left corner (then reduce is applied) or it
can be the next symbol on the I';; stack, then both can be popped:

[Xo, X3,7]
[, B, 7]

Remove:

The recognizer is successfull if I'cppp = L'ig = L'ipg = €:

Goal item: [e, ¢, €]

8/17

Algorithm (5)

Example: Left Corner Parsing

Productions:
S — aSa|bSbh|c
input w = abcba.

Leompt | Tia Ty | operation
abcba | S €

bcba | Sa$S S reduce
cha SbSaS | SS | reduce
ba SbSa$sS | SSS | reduce
Sha SbSaS | SS | move
ba bSas SS | remove
a Sass SS | remove
Sa Sa$s S move

a a$s S remove
€ $S S remove
S S € move

€ € € remove

9/17

Algorithm (6)

Problematic for left-corner parsing:

m c-productions: there is no left corner that can trigger a reduce
step with an e-production. If we allow e-productions to be pre-
dicted in reduce steps without a left corner, we would add them
an infinite number of times.

m loops: as in the LL-parsing case, loops can cause an infinite
sequence of reduce and move steps. This problem is already
avoided with the item-based formulation since we would only try
to create the same items again.

Both problems can be overcome using the chart-based version with
dotted productions described later.

10/17

Look-ahead (1)

Idea:

m build the reflexive transitive closure LC* of the left corner rela-
tion LC,

m before applying reduce, check whether the top of I';; stands in
the relation LC* to the lhs of the new production we predict:

Reduce:
(X1, B,]
[a, X5 ... Xk$BS,AY]

A—=X\X,...X; € P,(B,A) € LC*

Difference between LC* and First: LC* for a given non-terminal can be
non-terminals and terminals, while the First sets contain only terminals.
LC* = {{A,X) |A = Xa}

11/17

Look-ahead (2)

Example:
VP — VNP, VP — VP PP, V — sees,

NP — Det N, Det — the, N — N PP, N — girl, N — telescope,
PP — P NP, P — with

LC:
(VP, V), (VP, VP), (V, sees) (NP, Det), (Det, the),
(N, N), (N, girl), (N, telescope), (PP, P), (P, with)

LC* = LC U:

{(VP, sees), (V, V), (NP, NP), (NP, the),
(PP, PP), (PP, with), (P, P)}

12/17

Chart Parsing (1)

Problem of left corner parsing: non-deterministic.

In order to avoid computing partial results several times, we can use
tabulation, i.e., adopt chart parsing.

Items we need to tabulate:
m Completely recognized categories: passive items [X, i, |

m Partially recognized productions: active items [A — « o (3,1,]
witha € (NUT),8€ (NUT)*
(i index of first terminal in yield, / length of the yield)

13/17

Chart Parsing (2)

Let us again assume a CFG without e-productions.
We start with the initial items [w;, i, 1].
The operations reduce, remove and move are then as follows:

m Reduce: If [X},i,/]and A — X X;...X; € P, then we add
[A — X1 0X5.. .Xk,i,l].

m Move: If [A — X1 X5 ... Xye, i, 1], then we add [A, i, []

m Remove: If [X,i,/]and [A — « e X[3,j,i — j] then we add
[A—aXep,ji—j+]1.

14/17

Chart Parsing (3)

Parsing Schema:

Scan: W 1<i<n

Reduce: A —>P§(’ioylc]y,i, 1 A—=XaeP
Remove: =1+
Move: A _[>A?i(l.]’]

Goal item: [S, 1, n].

(This is actually the same algo as the CYK with dotted productions seen
earlier in the course, except for different names of the rules and a different use
of indices.)

15/17

Chart Parsing (4)

Example: Left Corner Chart Parsing

Productions: S — aSa | bSb | c, input w = abcba, all items listed.

item(s)

rule

antecedens items

a,1,1],[b,2,1],[c,3, 1], [b,4, 1], [a, 5, 1] (axioms)

[

[S— aeSa,l,l1]
[S = beSh,2, 1]
[S — ce,3,1]

IS — besSh,4l1]
[S— aeSa,5,1]
5,3, 1]

IS — bS eb,2,2]
S — bSbe,2,3]
[5,2,3]

[S— aSea,l, 4]
[S — aSae, 1, 3]
(5,1, 5]

reduce
reduce
reduce
reduce
reduce
move
remove
remove
move
remove
remove
move

S

3

1]
]
]
|

S0
.[;“w[\.).—
—_

[a,

[

[

[b,4,

[a,5,1]

[S—>CO3 1]

S = beSh,2,1],[S,3, 1]
S — bSeb.2.2). [b.4.1]
[S = bSbe,2,3]
[S—aeSa,1,1],[S,2,3]
| 5]
[

S—aSea,l,4],|a,
S — aSae, 1, 5]

16/17

Conclusion

m The left corner of a production is the first element of its rhs.

m Predict a production only if its left corner has already been
found.

m In general non-deterministic.
m Problematic for e-productions and loops.

m Can be implemented as a chart parser with passive and active
items.

m In the chart parser, e-productions can be dealt with (they require
an additional Scan-¢ rule) and loops are no longer a problem.

17/17

	Motivation
	Algorithm
	Look-ahead
	Chart Parsing

