Parsing
 Left-Corner Parsing

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf
Summer 2022
hhu =
Universităt
Düsseldorf

Table of contents

(1) Motivation
(2) Algorithm
(3) Look-ahead

4 Chart Parsing

Motivation

Problems with pure TD/BU approaches:

- Top-Down does not check whether the actual input corresponds to the predictions made.
- Bottom-Up does not check whether the recognized constituents correspond to anything one might predict starting from S.
Mixed approaches help to overcome these problems:
- Left-Corner Parsing parses parts of the tree top down, parts bottom-up.
- Earley-Parsing is a chart-based combination of top-down predictions and bottom-up completions.

Idea

In a production $A \rightarrow X_{1} \ldots X_{k}$, the first righthand side element X_{1} is called the left corner of this production.
Notation: $\left\langle A, X_{1}\right\rangle \in L C$.
Idea:
■ Parse the left corner bottom-up while parsing X_{2}, \ldots, X_{k} topdown.

■ In other words, in order to predict the subtree

a parse tree for X_{1} must already be there.

Algorithm (1)

We assume a CFG without ε-productions and without loops.
We need the following three stacks:

- a stack $\Gamma_{\text {compl }}$ containing completed elements that can be used as potential left corners for applying new productions. Initial value: w

■ a stack $\Gamma_{t d}$ containing the top-down predicted elements of a rhs (i.e., the rhs without the left corner) Initial value: S

- a stack $\Gamma_{l h s}$ containing the lhs categories that are waiting to be completed. Once all the top-down predicted rhs symbols are completed, the category is moved to $\Gamma_{\text {compl }}$. Initial value: ε

Algorithm (2)

Item form $\left[\Gamma_{c o m p l}, \Gamma_{t d}, \Gamma_{l h s}\right]$ with

- $\Gamma_{\text {compl }} \in(N \cup T)^{*}$,

■ $\Gamma_{t d} \in(N \cup T \cup\{\$\})^{*}$ where $\$$ is a new symbol marking the end of a rhs,
■ $\Gamma_{l h s} \in N^{*}$.
Whenever the symbols X_{2}, \ldots, X_{k} from a rhs are pushed onto $\Gamma_{t d}$, they are preceded by $\$$ to mark the end of a rhs (i.e., the point where a category can be completed).

Axiom:

$$
[w, S, \varepsilon]
$$

Algorithm (3)

Reduce can be applied if the top of $\Gamma_{\text {compl }}$ is the left corner X_{1} of some rule $A \rightarrow X_{1} X_{2} \ldots X_{k}$. Then X_{1} is popped, $X_{2} \ldots X_{k} \$$ is pushed onto $\Gamma_{t d}$ and A is pushed onto $\Gamma_{l h s}$:

Reduce: $\frac{\left[X_{1} \alpha, B \beta, \gamma\right]}{\left[\alpha, X_{2} \ldots X_{k} \$ B \beta, A \gamma\right]} A \rightarrow X_{1} X_{2} \ldots X_{k} \in P, B \neq \$$

Once the entire righthand side has been completed (top of $\Gamma_{t d}$ is $\$$), the completed category is moved from $\Gamma_{l h s}$ to $\Gamma_{\text {compl }}$:

Move: $\frac{[\alpha, \$ \beta, A \gamma]}{[A \alpha, \beta, \gamma]} A \in N$

Algorithm (4)

A completed category can be a left corner (then reduce is applied) or it can be the next symbol on the $\Gamma_{t d}$ stack, then both can be popped:

Remove: $\frac{[X \alpha, X \beta, \gamma]}{[\alpha, \beta, \gamma]}$
The recognizer is successfull if $\Gamma_{c o m p l}=\Gamma_{t d}=\Gamma_{l h s}=\varepsilon$:
Goal item: $[\varepsilon, \varepsilon, \varepsilon]$

Algorithm (5)

Example: Left Corner Parsing

Productions:	$\Gamma_{\text {compl }}$	$\Gamma_{t d}$	$\Gamma_{l h s}$	operation
$S \rightarrow a S a\|b S b\| c$	$a b c b a$	S	ε	
input $w=a b c b a$.	$b c b a$	$S a \$ S$	S	reduce
	$c b a$	$S b \$ S a \$ S$	$S S$	reduce
	$b a$	$\$ S b \$ S a \$ S$	$S S S$	reduce
$S b a$	$S b \$ S a \$ S$	$S S$	move	
	$b a$	$b \$ S a \$ S$	$S S$	remove
	a	$\$ S a \$ S$	$S S$	remove
	$S a$	$S a \$ S$	S	move
	a	$a \$ S$	S	remove
	ε	$\$ S$	S	remove
	S	S	ε	move
	ε	ε	ε	remove

Algorithm (6)

Problematic for left-corner parsing:

- ε-productions: there is no left corner that can trigger a reduce step with an ε-production. If we allow ε-productions to be predicted in reduce steps without a left corner, we would add them an infinite number of times.
■ loops: as in the LL-parsing case, loops can cause an infinite sequence of reduce and move steps. This problem is already avoided with the item-based formulation since we would only try to create the same items again.

Both problems can be overcome using the chart-based version with dotted productions described later.

Look-ahead (1)

Idea:
■ build the reflexive transitive closure $L C^{*}$ of the left corner relation $L C$,

- before applying reduce, check whether the top of $\Gamma_{t d}$ stands in the relation $L C^{*}$ to the lhs of the new production we predict:

Reduce:

$$
\frac{\left[X_{1} \alpha, B \beta, \gamma\right]}{\left[\alpha, X_{2} \ldots X_{k} \$ B \beta, A \gamma\right]} A \rightarrow X_{1} X_{2} \ldots X_{k} \in P,\langle B, A\rangle \in L C^{*}
$$

Difference between $L C^{*}$ and First: $L C^{*}$ for a given non-terminal can be non-terminals and terminals, while the First sets contain only terminals. $L C^{*}=\{\langle A, X\rangle \mid A \stackrel{*}{\Rightarrow} X \alpha\}$

Look-ahead (2)

Example:
VP \rightarrow V NP, VP \rightarrow VP PP, V \rightarrow sees,
$\mathrm{NP} \rightarrow$ Det N , Det \rightarrow the, $\mathrm{N} \rightarrow \mathrm{N}$ PP, $\mathrm{N} \rightarrow$ girl, $\mathrm{N} \rightarrow$ telescope, $\mathrm{PP} \rightarrow \mathrm{P}$ NP, $\mathrm{P} \rightarrow$ with

LC:
$\langle\mathrm{VP}, \mathrm{V}\rangle,\langle\mathrm{VP}, \mathrm{VP}\rangle,\langle\mathrm{V}$, sees $\rangle\langle\mathrm{NP}$, Det \rangle,\langle Det, the \rangle,
$\langle\mathrm{N}, \mathrm{N}\rangle,\langle\mathrm{N}$, girl $\rangle,\langle\mathrm{N}$, telescope $\rangle,\langle\mathrm{PP}, \mathrm{P}\rangle,\langle\mathrm{P}$, with \rangle
$L C^{*}=L C \cup:$
$\{\langle\mathrm{VP}$, sees $\rangle,\langle\mathrm{V}, \mathrm{V}\rangle,\langle\mathrm{NP}, \mathrm{NP}\rangle,\langle\mathrm{NP}$, the \rangle,
$\langle\mathrm{PP}, \mathrm{PP}\rangle,\langle\mathrm{PP}$, with $\rangle,\langle\mathrm{P}, \mathrm{P}\rangle\}$

Chart Parsing (1)

Problem of left corner parsing: non-deterministic.
In order to avoid computing partial results several times, we can use tabulation, i.e., adopt chart parsing.

Items we need to tabulate:
■ Completely recognized categories: passive items $[X, i, l]$
■ Partially recognized productions: active items $[A \rightarrow \alpha \bullet \beta, i, l]$ with $\alpha \in(N \cup T)^{+}, \beta \in(N \cup T)^{*}$
(i index of first terminal in yield, l length of the yield)

Chart Parsing (2)

Let us again assume a CFG without ε-productions.
We start with the initial items $\left[w_{i}, i, 1\right]$.
The operations reduce, remove and move are then as follows:
■ Reduce: If $\left[X_{1}, i, l\right]$ and $A \rightarrow X_{1} X_{2} \ldots X_{k} \in P$, then we add $\left[A \rightarrow X_{1} \bullet X_{2} \ldots X_{k}, i, l\right]$.

■ Move: If $\left[A \rightarrow X_{1} X_{2} \ldots X_{k} \bullet, i, l\right]$, then we add $[A, i, l]$
■ Remove: If $[X, i, l]$ and $[A \rightarrow \alpha \bullet X \beta, j, i-j]$ then we add $[A \rightarrow \alpha X \bullet \beta, j, i-j+l]$.

Chart Parsing (3)

Parsing Schema:

Scan: $\overline{\left[w_{i}, i, 1\right]} 1 \leq i \leq n$
Reduce: $\frac{[X, i, l]}{[A \rightarrow X \bullet \alpha, i, l]} A \rightarrow X \alpha \in P$
Remove: $\frac{\left[A \rightarrow \alpha \bullet X \beta, i, l_{1}\right],\left[X, j, l_{2}\right]}{\left[A \rightarrow \alpha X \bullet \beta, i, l_{1}+l_{2}\right]} j=i+l_{1}$
Move: $\frac{[A \rightarrow \alpha X \bullet, i, l]}{[A, i, l]}$
Goal item: $[S, 1, n]$.
(This is actually the same algo as the CYK with dotted productions seen earlier in the course, except for different names of the rules and a different use of indices.)

Chart Parsing (4)

Example: Left Corner Chart Parsing

Productions: $S \rightarrow a S a|b S b| c$, input $w=a b c b a$, all items listed.

item (s)	rule	antecedens items
$[a, 1,1],[b, 2,1],[c, 3,1],[b, 4,1],[a, 5,1]$ (axioms)		
$[S \rightarrow a \bullet S a, 1,1]$	reduce	$[a, 1,1]$
$[S \rightarrow b \bullet S b, 2,1]$	reduce	$[b, 2,1]$
$[S \rightarrow c \bullet, 3,1]$	reduce	$[c, 3,1]$
$[S \rightarrow b \bullet S b, 4,1]$	reduce	$[b, 4,1]$
$[S \rightarrow a \bullet S a, 5,1]$	reduce	$[a, 5,1]$
$[S, 3,1]$	move	$[S \rightarrow c \bullet, 3,1]$
$[S \rightarrow b S \bullet b, 2,2]$	remove	$[S \rightarrow b \bullet S b, 2,1],[S, 3,1]$
$[S \rightarrow b S b \bullet, 2,3]$	remove	$[S \rightarrow b S \bullet b, 2,2],[b, 4,1]$
$[S, 2,3]$	move	$[S \rightarrow b S b \bullet, 2,3]$
$[S \rightarrow a S \bullet a, 1,4]$	remove	$[S \rightarrow a \bullet S a, 1,1],[S, 2,3]$
$[S \rightarrow a S a \bullet, 1,5]$	remove	$[S \rightarrow a S \bullet a, 1,4],[a, 5,1]$
$[S, 1,5]$	move	$[S \rightarrow a S a \bullet, 1,5]$

Conclusion

- The left corner of a production is the first element of its rhs.
- Predict a production only if its left corner has already been found.
■ In general non-deterministic.
■ Problematic for ε-productions and loops.
- Can be implemented as a chart parser with passive and active items.
- In the chart parser, ε-productions can be dealt with (they require an additional Scan- ε rule) and loops are no longer a problem.

