Parsing Left-Corner Parsing

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Summer 2022

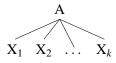
Table of contents

Motivation

Problems with pure TD/BU approaches:

- Top-Down does not check whether the actual input corresponds to the predictions made.
- Bottom-Up does not check whether the recognized constituents correspond to anything one might predict starting from S.

Mixed approaches help to overcome these problems:


- Left-Corner Parsing parses parts of the tree top down, parts bottom-up.
- Earley-Parsing is a chart-based combination of top-down predictions and bottom-up completions.

Idea

In a production $A \to X_1 \dots X_k$, the first righthand side element X_1 is called the **left corner** of this production. Notation: $\langle A, X_1 \rangle \in LC$.

Idea:

- Parse the left corner bottom-up while parsing X_2, \ldots, X_k topdown.
- In other words, in order to predict the subtree

a parse tree for X_1 must already be there.

Algorithm (1)

We assume a CFG without ε -productions and without loops. We need the following three stacks:

- a stack Γ_{compl} containing completed elements that can be used as potential left corners for applying new productions.
 Initial value: w
- a stack Γ_{td} containing the top-down predicted elements of a rhs (i.e., the rhs without the left corner) Initial value: *S*
- a stack Γ_{lhs} containing the lhs categories that are waiting to be completed. Once all the top-down predicted rhs symbols are completed, the category is moved to Γ_{compl}. Initial value: ε

Algorithm (2)

Item form $[\Gamma_{compl}, \Gamma_{td}, \Gamma_{lhs}]$ with

$$\blacksquare \ \Gamma_{compl} \in (N \cup T)^*,$$

• $\Gamma_{td} \in (N \cup T \cup \{\$\})^*$ where \$ is a new symbol marking the end of a rhs,

$$\square \Gamma_{lhs} \in N^*.$$

Whenever the symbols X_2, \ldots, X_k from a rhs are pushed onto Γ_{td} , they are preceded by \$ to mark the end of a rhs (i.e., the point where a category can be completed).

Axiom:
$$w, S, \varepsilon$$

Algorithm (3)

Reduce can be applied if the top of Γ_{compl} is the left corner X_1 of some rule $A \to X_1 X_2 \dots X_k$. Then X_1 is popped, $X_2 \dots X_k$ \$ is pushed onto Γ_{td} and A is pushed onto Γ_{lhs} :

Reduce:
$$\frac{[X_1\alpha, B\beta, \gamma]}{[\alpha, X_2 \dots X_k \$ B\beta, A\gamma]} A \to X_1 X_2 \dots X_k \in P, B \neq \$$$

Once the entire righthand side has been completed (top of Γ_{td} is \$), the completed category is moved from Γ_{lhs} to Γ_{compl} :

Move:
$$\frac{[\alpha, \$\beta, A\gamma]}{[A\alpha, \beta, \gamma]} A \in N$$

A completed category can be a left corner (then reduce is applied) or it can be the next symbol on the Γ_{td} stack, then both can be popped:

Remove: $\frac{[X\alpha, X\beta, \gamma]}{[\alpha, \beta, \gamma]}$

The recognizer is successfull if $\Gamma_{compl} = \Gamma_{td} = \Gamma_{lhs} = \varepsilon$:

Goal item: $[\varepsilon, \varepsilon, \varepsilon]$

Example: Left Corner Parsing

Productions: $S \rightarrow aSa \mid bSb \mid c$ input w = abcba.

	Γ_{compl}	Γ_{td}	Γ_{lhs}	operation
c	abcba	S	ε	
cba.	bcba	Sa\$S	S	reduce
	cba	Sb\$Sa\$S	SS	reduce
	ba	\$Sb\$Sa\$S	SSS	reduce
	Sba	Sb\$Sa\$S	SS	move
	ba	bSa S	SS	remove
	a	SaS	SS	remove
	Sa	Sa\$S	S	move
	a	a\$S	S	remove
	ε	\$ <i>S</i>	S	remove
	S	S	ε	move
	ε	ε	ε	remove

Algorithm (6)

Problematic for left-corner parsing:

- ε -productions: there is no left corner that can trigger a reduce step with an ε -production. If we allow ε -productions to be predicted in reduce steps without a left corner, we would add them an infinite number of times.
- loops: as in the LL-parsing case, loops can cause an infinite sequence of reduce and move steps. This problem is already avoided with the item-based formulation since we would only try to create the same items again.

Both problems can be overcome using the chart-based version with dotted productions described later.

Look-ahead (1)

Idea:

- build the reflexive transitive closure *LC*^{*} of the left corner relation *LC*,
- before applying *reduce*, check whether the top of Γ_{td} stands in the relation LC^* to the lhs of the new production we predict:

Reduce:

$$\frac{[X_1\alpha, B\beta, \gamma]}{[\alpha, X_2 \dots X_k \$ B\beta, A\gamma]} A \to X_1 X_2 \dots X_k \in P, \langle B, A \rangle \in LC^*$$

Difference between *LC*^{*} and *First*: *LC*^{*} for a given non-terminal can be non-terminals and terminals, while the *First* sets contain only terminals. $LC^* = \{ \langle A, X \rangle | A \stackrel{*}{\Rightarrow} X\alpha \}$

Look-ahead (2)

Example: $VP \rightarrow V NP, VP \rightarrow VP PP, V \rightarrow sees,$ $NP \rightarrow Det N, Det \rightarrow the, N \rightarrow N PP, N \rightarrow girl, N \rightarrow telescope,$ $PP \rightarrow P NP, P \rightarrow with$

LC:
$$\langle VP, V \rangle$$
, $\langle VP, VP \rangle$, $\langle V, sees \rangle$ $\langle NP, Det \rangle$, $\langle Det, the \rangle$, $\langle N, N \rangle$, $\langle N, girl \rangle$, $\langle N, telescope \rangle$, $\langle PP, P \rangle$, $\langle P, with \rangle$

```
LC^* = LC \cup: \{ \langle VP, sees \rangle, \langle V, V \rangle, \langle NP, NP \rangle, \langle NP, the \rangle, \langle PP, PP \rangle, \langle PP, with \rangle, \langle P, P \rangle \}
```

Problem of left corner parsing: non-deterministic.

In order to avoid computing partial results several times, we can use tabulation, i.e., adopt chart parsing.

Items we need to tabulate:

- Completely recognized categories: passive items [X, i, l]
- Partially recognized productions: active items $[A \to \alpha \bullet \beta, i, l]$ with $\alpha \in (N \cup T)^+, \beta \in (N \cup T)^*$

(*i* index of first terminal in yield, *l* length of the yield)

Let us again assume a CFG without ε -productions. We start with the initial items $[w_i, i, 1]$. The operations *reduce*, *remove* and *move* are then as follows:

- Reduce: If $[X_1, i, l]$ and $A \rightarrow X_1 X_2 \dots X_k \in P$, then we add $[A \rightarrow X_1 \bullet X_2 \dots X_k, i, l]$.
- Move: If $[A \to X_1 X_2 \dots X_k \bullet, i, l]$, then we add [A, i, l]
- Remove: If [X, i, l] and $[A \rightarrow \alpha \bullet X\beta, j, i j]$ then we add $[A \rightarrow \alpha X \bullet \beta, j, i j + l]$.

Chart Parsing (3)

Parsing Schema:

Scan:
$$\frac{[W_{i}, i, 1]}{[W_{i}, i, 1]} \quad 1 \leq i \leq n$$

Reduce:
$$\frac{[X, i, l]}{[A \to X \bullet \alpha, i, l]} \quad A \to X\alpha \in P$$

Remove:
$$\frac{[A \to \alpha \bullet X\beta, i, l_{1}], [X, j, l_{2}]}{[A \to \alpha X \bullet \beta, i, l_{1} + l_{2}]} \quad j = i + l_{1}$$

Move:
$$\frac{[A \to \alpha X \bullet, i, l]}{[A, i, l]}$$

Goal item: [S, 1, n].

(This is actually the same algo as the CYK with dotted productions seen earlier in the course, except for different names of the rules and a different use of indices.)

Chart Parsing (4)

Example: Left Corner Chart Parsing

Productions: $S \rightarrow aSa | bSb | c$, input w = abcba, all items listed.

item(s)	rule	antecedens items			
[a, 1, 1], [b, 2, 1], [c, 3, 1], [b, 4, 1], [a, 5, 1] (axioms)					
$[S \rightarrow a \bullet Sa, 1, 1]$	reduce	[a, 1, 1]			
[S ightarrow b ullet Sb, 2, 1]	reduce	[b, 2, 1]			
[S ightarrow c ullet, 3, 1]	reduce	[c, 3, 1]			
$[S \rightarrow b \bullet Sb, 4, 1]$	reduce	[b, 4, 1]			
$[S \rightarrow a \bullet Sa, 5, 1]$	reduce	[a, 5, 1]			
[S, 3, 1]	move	[S ightarrow c ullet, 3, 1]			
$[S \rightarrow bS \bullet b, 2, 2]$	remove	$[S \rightarrow b \bullet Sb, 2, 1], [S, 3, 1]$			
$[S \rightarrow bSb \bullet, 2, 3]$	remove	$[S \rightarrow bS \bullet b, 2, 2], [b, 4, 1]$			
[S, 2, 3]	move	[S ightarrow bSb ullet, 2, 3]			
$[S \rightarrow aS \bullet a, 1, 4]$	remove	$[S \rightarrow a \bullet Sa, 1, 1], [S, 2, 3]$			
$[S \rightarrow aSa \bullet, 1, 5]$	remove	$[S \rightarrow aS \bullet a, 1, 4], [a, 5, 1]$			
[S, 1, 5]	move	$[S \rightarrow aSa \bullet, 1, 5]$			

Conclusion

- The left corner of a production is the first element of its rhs.
- Predict a production only if its left corner has already been found.
- In general non-deterministic.
- Problematic for ε -productions and loops.
- Can be implemented as a chart parser with passive and active items.
- In the chart parser, ε -productions can be dealt with (they require an additional Scan- ε rule) and loops are no longer a problem.