
Parsing
Left-Corner Parsing

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Summer 2022

1 / 17

Table of contents

1 Motivation

2 Algorithm

3 Look-ahead

4 Chart Parsing

2 / 17

Motivation

Problems with pure TD/BU approaches:

Top-Down does not check whether the actual input corresponds
to the predictions made.

Bottom-Up does not check whether the recognized constituents
correspond to anything one might predict starting from S.

Mixed approaches help to overcome these problems:

Left-Corner Parsing parses parts of the tree top down, parts
bottom-up.

Earley-Parsing is a chart-based combination of top-down predic-
tions and bottom-up completions.

3 / 17

Idea

In a production A → X1 . . .Xk, the first righthand side element X1 is
called the left corner of this production.
Notation: 〈A,X1〉 ∈ LC.

Idea:

Parse the left corner bottom-up while parsing X2, . . . ,Xk top-
down.

In other words, in order to predict the subtree A

Xk. . .X2X1

a parse tree for X1 must already be there.

4 / 17

Algorithm (1)

We assume a CFG without ε-productions and without loops.
We need the following three stacks:

a stack Γcompl containing completed elements that can be used as
potential left corners for applying new productions.
Initial value: w

a stack Γtd containing the top-down predicted elements of a rhs
(i.e., the rhs without the left corner)
Initial value: S

a stack Γlhs containing the lhs categories that are waiting to be
completed. Once all the top-down predicted rhs symbols are
completed, the category is moved to Γcompl.
Initial value: ε

5 / 17

Algorithm (2)

Item form [Γcompl,Γtd,Γlhs] with

Γcompl ∈ (N ∪ T)∗,

Γtd ∈ (N ∪ T ∪ {$})∗ where $ is a new symbol marking the end
of a rhs,

Γlhs ∈ N∗.

Whenever the symbols X2, . . . ,Xk from a rhs are pushed onto Γtd, they
are preceded by $ to mark the end of a rhs (i.e., the point where a
category can be completed).

Axiom:
[w, S, ε]

6 / 17

Algorithm (3)

Reduce can be applied if the top of Γcompl is the left corner X1 of some
rule A→ X1X2 . . .Xk. Then X1 is popped, X2 . . .Xk$ is pushed onto
Γtd and A is pushed onto Γlhs:

Reduce:
[X1α,Bβ, γ]

[α,X2 . . .Xk$Bβ,Aγ]
A→ X1X2 . . .Xk ∈ P,B 6= $

Once the entire righthand side has been completed (top of Γtd is $), the
completed category is moved from Γlhs to Γcompl:

Move:
[α, $β,Aγ]

[Aα, β, γ]
A ∈ N

7 / 17

Algorithm (4)

A completed category can be a left corner (then reduce is applied) or it
can be the next symbol on the Γtd stack, then both can be popped:

Remove:
[Xα,Xβ, γ]

[α, β, γ]

The recognizer is successfull if Γcompl = Γtd = Γlhs = ε:

Goal item: [ε, ε, ε]

8 / 17

Algorithm (5)

Example: Left Corner Parsing

Productions:
S→ aSa | bSb | c
input w = abcba.

Γcompl Γtd Γlhs operation
abcba S ε
bcba Sa$S S reduce
cba SbSaS SS reduce
ba SbSa$S SSS reduce
Sba SbSaS SS move
ba bSaS SS remove
a SaS SS remove
Sa Sa$S S move
a a$S S remove
ε $S S remove
S S ε move
ε ε ε remove

9 / 17

Algorithm (6)

Problematic for left-corner parsing:

ε-productions: there is no left corner that can trigger a reduce
step with an ε-production. If we allow ε-productions to be pre-
dicted in reduce steps without a left corner, we would add them
an infinite number of times.

loops: as in the LL-parsing case, loops can cause an infinite
sequence of reduce and move steps. This problem is already
avoided with the item-based formulation since we would only try
to create the same items again.

Both problems can be overcome using the chart-based version with
dotted productions described later.

10 / 17

Look-ahead (1)

Idea:

build the reflexive transitive closure LC∗ of the left corner rela-
tion LC,

before applying reduce, check whether the top of Γtd stands in
the relation LC∗ to the lhs of the new production we predict:

Reduce:
[X1α,Bβ, γ]

[α,X2 . . .Xk$Bβ,Aγ]
A→ X1X2 . . .Xk ∈ P, 〈B,A〉 ∈ LC∗

Difference between LC∗ and First: LC∗ for a given non-terminal can be
non-terminals and terminals, while the First sets contain only terminals.
LC∗ = {〈A,X〉 |A ∗⇒ Xα}

11 / 17

Look-ahead (2)

Example:
VP→ V NP, VP→ VP PP, V→ sees,
NP→ Det N, Det→ the, N→ N PP, N→ girl, N→ telescope,
PP→ P NP, P→ with

LC:
〈VP, V〉, 〈VP, VP〉, 〈V, sees〉 〈NP, Det〉, 〈Det, the〉,
〈N, N〉, 〈N, girl〉, 〈N, telescope〉, 〈PP, P〉, 〈P, with〉

LC∗ = LC ∪:
{〈VP, sees〉, 〈V, V〉, 〈NP, NP〉, 〈NP, the〉,
〈PP, PP〉, 〈PP, with〉, 〈P, P〉}

12 / 17

Chart Parsing (1)

Problem of left corner parsing: non-deterministic.

In order to avoid computing partial results several times, we can use
tabulation, i.e., adopt chart parsing.

Items we need to tabulate:

Completely recognized categories: passive items [X, i, l]

Partially recognized productions: active items [A → α • β, i, l]
with α ∈ (N ∪ T)+, β ∈ (N ∪ T)∗

(i index of first terminal in yield, l length of the yield)

13 / 17

Chart Parsing (2)

Let us again assume a CFG without ε-productions.
We start with the initial items [wi, i, 1].
The operations reduce, remove and move are then as follows:

Reduce: If [X1, i, l] and A → X1X2 . . .Xk ∈ P, then we add
[A→ X1 • X2 . . .Xk, i, l].

Move: If [A→ X1X2 . . .Xk•, i, l], then we add [A, i, l]

Remove: If [X, i, l] and [A → α • Xβ, j, i − j] then we add
[A→ αX • β, j, i− j + l].

14 / 17

Chart Parsing (3)

Parsing Schema:

Scan:
[wi, i, 1]

1 ≤ i ≤ n

Reduce:
[X, i, l]

[A→ X • α, i, l] A→ Xα ∈ P

Remove:
[A→ α • Xβ, i, l1], [X, j, l2]

[A→ αX • β, i, l1 + l2]
j = i + l1

Move:
[A→ αX•, i, l]

[A, i, l]

Goal item: [S, 1, n].

(This is actually the same algo as the CYK with dotted productions seen
earlier in the course, except for different names of the rules and a different use
of indices.)

15 / 17

Chart Parsing (4)

Example: Left Corner Chart Parsing
Productions: S→ aSa | bSb | c, input w = abcba, all items listed.

item(s) rule antecedens items
[a, 1, 1], [b, 2, 1], [c, 3, 1], [b, 4, 1], [a, 5, 1] (axioms)
[S→ a • Sa, 1, 1] reduce [a, 1, 1]
[S→ b • Sb, 2, 1] reduce [b, 2, 1]
[S→ c•, 3, 1] reduce [c, 3, 1]
[S→ b • Sb, 4, 1] reduce [b, 4, 1]
[S→ a • Sa, 5, 1] reduce [a, 5, 1]
[S, 3, 1] move [S→ c•, 3, 1]
[S→ bS • b, 2, 2] remove [S→ b • Sb, 2, 1], [S, 3, 1]
[S→ bSb•, 2, 3] remove [S→ bS • b, 2, 2], [b, 4, 1]
[S, 2, 3] move [S→ bSb•, 2, 3]
[S→ aS • a, 1, 4] remove [S→ a • Sa, 1, 1], [S, 2, 3]
[S→ aSa•, 1, 5] remove [S→ aS • a, 1, 4], [a, 5, 1]
[S, 1, 5] move [S→ aSa•, 1, 5]

16 / 17

Conclusion

The left corner of a production is the first element of its rhs.

Predict a production only if its left corner has already been
found.

In general non-deterministic.

Problematic for ε-productions and loops.

Can be implemented as a chart parser with passive and active
items.

In the chart parser, ε-productions can be dealt with (they require
an additional Scan-ε rule) and loops are no longer a problem.

17 / 17

	Motivation
	Algorithm
	Look-ahead
	Chart Parsing

