
Einführung in die Computerlinguistik
N-grams and language models

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Summer 2022

1 / 31

Table of contents

1 Motivation

2 N-grams

3 Maximum likelihood estimation

4 Evaluating language models

5 Unknown words

6 Smoothing

7 Neural Language Models

2

Motivation

Goals:

Estimate the probability that a given sequence of words
occurs in a specific language.

Model the most probable next word for a given sequence of
words.

Jurafsky & Martin (2020), chapter 3 and 7, and Chen &
Goodman (1999)

3

Motivation

Examples from Jurafsky & Martin (2020)

(1) Please turn your homework . . .
What is a probable continuation? Rather in or over and
not refrigerator.

(2) a. all of a sudden I notice three guys standing on the
sidewalk

b. on guys all I of notice sidewalk three a sudden
standing the

Which of the two word orders is better?

Language model (LM): Probabilistic model that gives
P(w1 . . .wn) and P(wn|w1 . . .wn−1)

4

Motivation

Applications:

Tasks in which we have to identify words in noisy, ambigu-
ous input: speech recognition, handwriting recognition, . . .

spelling correction

Example

(3) a. their is only one written exam in this class
b. there is only one written exam in this class

machine translation: among a series of different word or-
ders in the target language, one has to choose the best one.

Example

(4) a. Das Fahrrad wird er heute reparieren.
b. The bike will he today repair
c. The bike he will today repair.
d. The bike he will repair today.

5

N-grams

Notation: wm
1 = w1 . . .wm.

Question: How can we compute P(wm
1)?

P(wm
1) = P(w1)P(w2|w1)P(w3|w2

1) . . .P(wm|wm−1
1)

=

m∏
k=1

P(wk|wk−1
1)

But: computing P(wk|wk−1
1) for a large k is computationally

expensive.

Approximation of P(wk|wk−1
1): N-grams, i.e., look at just the

n− 1 last words, P(wk|wk−1
k−n+1) for some fixed n.

Special cases:

unigrams: n = 1, P(wk)

bigrams: n = 2, P(wk|wk−1)

trigrams: n = 3, P(wk|wk−2wk−1)

6

N-grams

With n-grams, we get

1 Probability of a sequence of words:

P(wl
1) ≈

l∏
k=1

P(wk|wk−1
k−n+1)

2 Probability of a next word:

P(wl|wl−1
1) ≈ P(wl|wl−1

l−n+1)

These are strong independence assumptions called Markov
assumptions. E.g. with bigrams

Example

P(einfach|die Klausur war nicht) ≈ P(einfach|nicht)

7

Maximum likelihood estimation (MLE)

Question: How do we estimate the n-gram probabilities?

Maximum likelihood estimation (MLE): Get n-gram counts
from a (large) corpus and normalize so that the values lie be-
tween 0 and 1.

P(wk|wk−1
k−n+1) =

C(wk−1
k−n+1wk)

C(wk−1
k−n+1)

In the bigram case, this amounts to

P(wk|wk−1) =
C(wk−1wk)

C(wk−1)

We augment sentences with an initial 〈s〉 and a final 〈/s〉

8

Maximum likelihood estimation (MLE)

Example from Jurafsky & Martin (2020)

Training data:

< s > I am Sam < /s >
< s > Sam I am < /s >
< s > I do not like green eggs and ham < /s >

Some bigram probabilities:

P(I|< s >) = 2
3 P(Sam|< s >) = 1

3 P(am|I) = 2
3

P(< /s >|Sam) = 1
2 P(Sam|am) = 1

2 P(do|I) = 1
3

9

Maximum likelihood estimation (MLE)

Practical issues:

In practice, n is mostly between 3 and 5, i.e., we use tri-
grams, 4-grams or 5-grams.

LM probabilities are always represented as log probabili-
ties. Advantage: Adding replaces multiplying and numeri-
cal underflow is avoided.

p1 · p2 · . . . pl = exp(log p1 + log p2 + · · ·+ log pl)

10

Maximum likelihood estimation (MLE)

Reminder: log 1 = 0, log 0 = −∞

0 0.2 0.4 0.6 0.8 1
−2.5

−2

−1.5

−1

−0.5

0 log10 x

11

Evaluating language models

The data is usually separated into

a training set (80% of the data),

a test set (10% of the data),

and sometimes a development set (10% of the data).

The model is estimated from the training set. Intuitively, the
higher the probability of the test set, the better the model.

But: Using probabilities prefers shorter sentences to longer ones,
regardless of the sentence lengths in the training data.

Instead of measuring the probability of the test set, LMs are
usually evaluated with respect to the perplexity of the test set.
The lower the perplexity, the better the sentence.

12

Evaluating language models

The perplexity of a test set W = w1w2 . . .wN is defined as

PP(W) = P(W)−
1
N

= N

√
1

P(W)

= N

√
1

P(w1w2...wN)

=
N

√√√√√ 1
N∏

k=1

P(wk|wk−1
1)

With our n-gram model, we get then for the perplexity:

Perplexity

PP(W) =
N

√√√√√ 1
N∏

k=1

P(wk|wk−1
k−n+1)

13

Evaluating language models

Example

Training data (toy example):
<s> a b c a b c </s> <s> a a b b a a b b a a </s>
<s> b b a a b b a a </s> <s> a b c a b a </s>

Some of the resulting bigram probabilities:
P(a|<s>) = 3

4 P(a|a) = 5
15 = 1

3 P(b|a) = 7
15

P(b|b) = 4
12 = 1

3 P(c|b) = 3
12 = 1

4 P(a|c) = 2
3

Probabilities and perplexities of the following sequencies:
(1) <s> a b c (2) <s> a b c a a b b

(1): probability 3
4 ·

7
15 ·

1
4 = 21

240 = 7
80 = 0.0875

perplexity 3

√
80
7 ≈ 2.252

(2): probability 3
4 ·

7
15 ·

1
4 ·

2
3 ·

1
3 ·

7
15 ·

1
3 = 3·7·2·7

4·15·4·3·3·15·3 = 49
16200 ≈ 0.003

perplexity 7

√
16200
49 ≈ 2.29

14

Evaluating language models

A different way to think about perplexity: it measures the
weighted average branching factor of a language.

Example

L = {a,b, c,d}∗. Frequencies are such that P(a) = P(b) =
P(c) = P(d) = 1

4 (independent from the context).
For any w ∈ L, given this model, we obtain

PP(w) =

|w|

√√√√√ 1
|w|∏
k=1

1

4

= |w|

√
1

1
4

|w| =
|w|√

4|w| = 4

The perplexity of any w ∈ L under this model is 4.

15

Evaluating language models

Example

L = {a,b, c,d}∗. Words in the language contain three times as
many a’s as they contain b’s, c’s or d’s. P(a) = 1

2 and P(b) =
P(c) = P(d) = 1

6 . For any w ∈ L with these frequencies and
with |w| = 6n:

PP(w) =
6n

√√√√√ 1
n∏

k=1

1

2 · 2 · 2 · 6 · 6 · 6

=
6n

√
26n ·

√
3
6n

= 2
√

3 = 3.46

Assume that we use the same model but test it on a w with
equal numbers of as, bs, cs and ds, |w| = 4n. Then we get

PP(w) =
4n

√√√√√ 1
n∏

k=1

1

2 · 6 · 6 · 6

=
4n
√

24n · 33n = 2
4n
√

3
3
4 4n = 2 4

√
27 = 4.56

16

Unknown words

Problem: New text can contain

unknown words; or

unseen n-grams.

In these cases, with the algorithm seen so far, we would assign
probability 0 to the entire text. (And we would not be able to
compute perplexity at all.)

Example from (Jurafsky & Martin, 2020)

Words following the bigram denied the in WSJ Treebank 3 with
counts:
denied the allegations 5
denied the speculation 2
denied the rumors 1
denied the report 1

If the test set contains denied the offer or denied the loan, the
model would estimate its probability as 0.

17

Unknown words

Unknown or out of vocabulary words:

Add a pseudo-word 〈UNK〉 to your vocabulary.

Two ways to train the probabilities concerning 〈UNK〉:
1 Choose a vocabulary V fixed in advance. Any word w /∈ V

in the training set is converted to 〈UNK〉. Then estimate
probabilities for 〈UNK〉 as for all other words.

2 Replace the first occurrence of every word w in the training
set with 〈UNK〉. Then estimate probabilities for 〈UNK〉 as
for all other words.

18

Smoothing

Unseen n-grams: To avoid probabilities 0, we do smoothing:
Take off some probability mass from the events seen in training
and assign it to unseen events.

Laplace Smoothing (or add-one smoothing):

Add 1 to the count of all n-grams in the training set before
normalizing into probabilities.

Not so much used for n-grams but for other tasks, for in-
stance text classification.

For unigrams, if N is the size of the training set and |V|
the size of the vocabulary, we replace
P(w) = C(w)

N with PLaplace(w) = C(w)+1
N+|V| .

For bigrams, we replace
P(wn|wn−1) = C(wn−1wn)

C(wn−1)
with PLaplace(wn|wn−1) = C(wn−1wn)+1

C(wn−1)+|V| .

19

Smoothing

Smoothing methods for n-grams that use the (n− 1)-grams,
(n− 2)-grams etc.:

Backoff: use the trigram if it has been seen, otherwise fall
back to the bigram and, if this has not been seen either, to
the unigram.

Interpolation: Use always a weighted combination of the
trigram, bigram and unigram probabilities.

Linear interpolation:

P̂(wn|wn−2wn−1) = λ1P(wn|wn−2wn−1)+λ2P(wn|wn−1)+λ3P(wn)

with
∑
i

λi = 1.

20

Smoothing

More sophisticated: each λ is computed conditioned on the
context.

P̂(wn|wn−2wn−1) = λ1(wn−2wn−1)P(wn|wn−2wn−1)
+λ2(wn−2wn−1)P(wn|wn−1)
+λ3(wn−2wn−1)P(wn)

In both cases,

the probabilities are first estimated from the training cor-
pus,

and the λ parameters are then estimated from separate
held-out data.

They are estimated such that they maximize the likelihood
of the held-out data.

21

Neural Language Models

State-of-the-art language models are oftentimes based on neural
network architectures.

In the following, we briefly sketch how a simple feedforward
neural language model might look like (Jurafsky & Martin, 2020,
chapter 7).

22

Neural Language Models

A feedforward neural network with one hidden layer works as
follows:

input
layer

x1

x2

...

xn0

hidden
layer

h1

h2

...

hn1

output
layer

y1

y2

...

yn3

23

Neural Language Models

x1

x2

...

xn0

h1

h2

...

hn1

y1

y2

...

yn3

The neural network takes an input vector
with components x1, . . . xn0

for the n1 nodes of the hidden layer,
activations h1, . . . ,hn1 are computed as follows:

hj = σ

(
n0∑
i=1

wjixi + bj

)
σ is a non-linear activation function.

for the n2 nodes of the output layer, activations z1, . . . , zn2
are computed as follows:

zj =

n1∑
i=1

ujihi

A subsequent softmax yields y1, . . . , yn2 with
∑n2

i=1 yi = 1.

The wji, bj and uji are parameters that are learned during
training.

24

Neural Language Models

Possible activation functions σ:

sigmoid

y = 1
1+e−x

−2 −1 1 2

−2

−1

1

2

x

y

25

Neural Language Models

tanh

y = tanh x
= ex−e−x

ex+e−x

−2 −1 1 2

−2

−1

1

2

x

y

26

Neural Language Models

Rectified linear unit ReLU

y = max(x, 0)

−1 −0.5 0.5 1 1.5 2

−1

1

x

y

27

Neural Language Models

The softmax function turns a sequence of output activations
z1, . . . , zn2 into probabilities by

1 mapping every zi to ezi , and

2 normalizing, i.e., dividing by the sum of all ezj for 1 ≤ j ≤
n2

It yields output values y1, . . . , yn2 with

yi =
ezi

n2∑
j=1

ezj

for all 1 ≤ i ≤ n2.

28

Neural Language Models

For a language model, we assume that we have some precompiled
vectors for each possible input word, these vectors are all of
dimension d. And we assume that |V| is the size of our
vocabulary.

Then a neural network that predicts for each sequence of n− 1
preceding words wl−1

l−n+1 and for each word wl ∈ V, the

probability P(wl|wl−1
l−n+1), can be as follows:

The input layer takes a concatenation of the vectors of
wl−1
l−n+1, i.e., it has d · (n− 1) components.

The output layer has |V| components, the ith component is
P(wl|wl−1

l−n+1) for the case where wl is the ith element of V.

29

Neural Language Models

The parameters of the network are learned by training on large
amounts of text (all sentences concatenated), starting with some
random initialization and then going through several rounds of
adjusting the parameters in order to minimize the loss that arises
from incorrect predictions of the next word.

30

References

Chen, Stanley F. & Joshua Goodman. 1999. An empirical study of
smoothing techniques for language modeling. Computer Speech and
Language 13. 359–394.

Jurafsky, Daniel & James H. Martin. 2020. Speech and language processing.
an introduction to natural language processing, computational linguistics,
and speech recognition. Draft of the 3rd edition. Available here:
https://web.stanford.edu/∼jurafsky/slp3/ed3book.pdf.

31

https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf

	Motivation
	N-grams
	Maximum likelihood estimation
	Evaluating language models
	Unknown words
	Smoothing
	Neural Language Models
	References

