
Einführung in die Computerlinguistik
Context-Free Grammars – formal properties

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Sommer 2022

1 / 20

Normal forms (1)

Hopcroft and Ullman (1979)
A normal form of a grammar formalism F is a further restriction
on the grammars in F that does not affect the set of generated
string languages.

Let G = 〈N,T,P, S〉 be a CFG. A X ∈ N ∪ T is called

useful if there is a derivation S
∗⇒ αXβ

∗⇒ w with w ∈ T∗.

useless otherwise.

For each CFG, there exists an equivalent CFG (= a CFG
generating the same string language) without useless symbols.

2 / 20

Normal forms (2)
To eliminate all useless symbols two things need to be done:

1 All X ∈ N need to be eliminated that cannot lead to a
terminal sequence.
This can be done recursively: Starting from the terminals
and following the productions from right to left, the set of
all symbols leading to terminals can be computed recur-
sively.
Productions containing symbols that are not in this set are
eliminated.

2 In the resulting CFG, the unreachable symbols need to be
eliminated.
This is done starting from S and applying productions.
Each time, the symbols from the right-hand sides are
added.
Again, productions containing non-terminals or terminals
that are not in the set are eliminated.

3 / 20

Normal Forms (3)

A production of the form A→ ε is called a ε-production.

The following holds:
For each CFG G, there is a CFG G′ without ε-productions such
that L(G′) = L(G) \ {ε}.

4 / 20

Normal Forms (4)

In order to eliminate ε-productions, we

compute the set Nε = {A |A ∗⇒ ε} recursively:
1 Nε := {A ∈ N |A⇒ ε}.
2 For all A with A→ α, α ∈ N∗

ε : add A to Nε.
3 Repeat 2. until Nε does not change any more.

delete the ε-productions and for each A → X1 . . .Xn: add
all productions one can obtain by deleting some X ∈ Nε

from the right-hand side as long as one does not delete all
X1, . . . ,Xn.

5 / 20

Normal Forms (5)

A production of the form A→ B is called a unary production.

For each CFL that does not contain ε, a CFG without unary
productions can be found.

Elimination of unary productions for a CFG without
ε-productions:

For all A
∗⇒ B and all B→ β, β /∈ N: add A→ β.

Delete all unary productions.

6 / 20

Normal Forms (6)

There are two important normal forms for CFGs: A CFG for a
language without ε is

in Chomsky normal form iff all productions have either the
form A→ BC or A→ a with A,B,C ∈ N, a ∈ T.

in Greibach normal form iff all productions have the form
A→ aα with a ∈ T, α ∈ N∗.

7 / 20

Normal Forms (7)

For each CFL L without ε, there is a CFG G in Chomsky normal
form with L = L(G).

Construction of an equivalent CFG in CNF for a given CFG
(after elimination of useless symbols, ε-productions and unary
productions):

1. For each terminal a: introduce new non-terminal Ca, re-
place a with Ca in all right-hand sides of length > 1 and
add production Ca → a.

8 / 20

Normal Forms (8)

2. For each production A → B0 . . .Bn introduce new non-
terminals D1, . . . ,Dn−1 and replace production with pro-
ductions
A→ B0D1, D1 → B1D2, D2 → B2D3, . . . , Dn−1 → Bn−1Bn.

A

BnB0
. . .

A

D1

D2B1

B0

. . .

Dn−1

BnBn−1

9 / 20

Normal Forms (9)

For each CFL L without ε, there is a CFG G in Greibach normal
form with L = L(G).

For the construction see Hopcroft and Ullman (1994).

10 / 20

Closure Properties (1)

CFLs are closed

under union (construction: add S′ → S1|S2 where S1,S2 the
start symbols of the two CFGs; condition: non-terminals in
the two CFGs pairwise disjoint)

under concatenation and Kleene closure (construction as
with regular languages)

under homomorphisms (construction: replace terminals in
productions with their images under the homomorphism)1

under substitution (construction: replace terminals in first
CFG with start symbols of corresponding CFGs, make sure
non-terminals of the involved CFGs are pairwise disjoint)

1A homomorphism in this context is a function f : Σ∗
1 → Σ∗

2 such that
f(w1w2) = f(w1)f(w2).

11 / 20

Closure Properties (2)

CFLs are closed under intersection with regular languages

(construction: take the CFG and the DFA of the regular
language; then build a new CFG by replacing non-terminals A
with triples 〈q1,A, q2〉 where the triple stands for derivation of
the yield of A while traversing a DFA path from q1 to q2)

12 / 20

Closure Properties (3)

Example for intersection with regular languages:
CFG: S→ aSb | ε, regular language a+b+.
DFA:

q0 q1 q2
a

a

b
b

Intersection grammar, start symbol S′:
S′ → 〈q0,S, q2〉 (q2 is the only final state)

〈q0,S, q2〉 → a〈q1,S, q1〉b (with δ(q0, a) = q1, δ(q1, b) = q2)

〈q0,S, q2〉 → a〈q1,S, q2〉b (with δ(q0, a) = q1, δ(q2, b) = q2)

〈q1, S, q2〉 → a〈q1,S, q2〉b (with δ(q1, a) = q1, δ(q2, b) = q2)

〈q1, S, q2〉 → a〈q1,S, q1〉b (with δ(q1, a) = q1, δ(q1, b) = q2)

〈q1, S, q1〉 → ε (since q1 = q1)

13 / 20

Pumping Lemma (1)

In a context-free derivation, the expansion of a non-terminal
A does not depend on the context A occurs in.

Consequently, if we have a derivation

S
+⇒ xAz

+⇒ xv1Av2z
+⇒ xv1yv2z

then the part A
+⇒ v1Av2 of the derivation can be iterated,

i.e., we can also have

S
+⇒ xvi

1yvi
2z

for any i ≥ 1.

14 / 20

Pumping Lemma (2)

Looking at the derivation trees, this is even clearer:
Assume that in a derivation tree, if the derivation tree has a
certain minimal height (maximal length of paths from root to
leaves), we have a path from the root (symbol S) to a leaf such
that

on this path, a non-terminal A occurs twice, and

below the higher of these As, there is only a single A and
no other non-terminal is repeated on any path.

Since the number of non-terminals is finite, from a certain string
length on, every derivation treee of a word in the language is
necessarily of this form.

15 / 20

Pumping Lemma (3)

The part of the derivation tree in between the two nodes with
the same non-terminal can be iterated. This means that the
strings yielded by this part are pumped.

A

A

S

x v1 y v2 z

16 / 20

Pumping Lemma (4)

Pumping lemma for context-free languages: Let L be a
context-free language. Then there is a constant k such that for
all w ∈ L with |w| ≥ k: w = xv1yv2z with

|v1v2| ≥ 1,

|v1yv2| ≤ k, and

for all i ≥ 0: xvi
1yvi

2z ∈ L.

17 / 20

Pumping Lemma (5)

With the pumping lemma and the closure properties, we can
show for a lot of languages that they are not context-free:

L1 = {anbncn |n ≥ 1} is not context-free.
Proof: Assume that L1 is context-free. Then it must satisfy the
pumping lemma with some constant k. Consequently, for every
w ∈ L1 and then in particular for akbkck, we must find
substrings v1, v2 that can be iterated. Either they contain each
only occurrences of a single terminal. Then the iteration will
yield words that have no longer the same numbers of as, bs and
cs. Or at least one contains at least two different terminals.
Then the iterations necessarily lead to words where the as, bs
and cs get mixed.
⇒ L1 does not satisfy the pumping lemma, contrary to the
assumption and therefore L1 cannot be context-free.

18 / 20

Pumping Lemma (6)

L2 = {w |w ∈ {a, b, c}∗, |w|a = |w|b = |w|c} is not context-free.
Proof: Assume that L2 is context-free. Then its intersection with
the regular language a+b+c+ must also be context-free. However,
this intersection is L1 = {anbncn | n ≥ 1}, for which we have just
shown that it is not context-free.
⇒ Since L1 is not context-free, our assmption is false and L2 is
not context-free either.

19 / 20

Hopcroft, J. E. and Ullman, J. D. (1979). Introduction to Automata
Theory, Languages and Computation. Addison Wesley.

Hopcroft, J. E. and Ullman, J. D. (1994). Einführung in die
Automatentheorie, Formale Sprachen und Komplexitätstheorie.
Addison Wesley, 3. edition.

20 / 20

	Normal forms
	Closure properties
	Pumping Lemma
	References

