
Parsing
Top-Down Parsing

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Summer 2022

1 / 19

Table of contents

1 Introduction

2 The recognizer

3 The parser

4 Control structures

5 Parser generators

6 Conclusion

2

Introduction

CFG parser that is

a top-down parser: we start with S and subsequently replace
lefthand sides of productions with righthand sides.

a directional parser: the expanding of non-terminals (with ap-
propriate righthand sides) is ordered; we start with the leftmost
non-terminal and go through the righthand sides of productions
from left to right.
In particular: we determine the start position of the span of the
ith symbol in a rhs only after having processed the i− 1 preceding
symbols.

a LL-parser: we process the input from left to right while con-
structing a leftmost derivation.

First proposed by Sheila Greibach (for CFGs in GNF).
Grune and Jacobs (2008)

3

The recognizer (1)

Assume CFG without left recursion A +⇒ Aα.

Function top-down with arguments

w: remaining input;

α: remaining sentential form (a stack).

top-down(w,α) iff α ∗⇒ w (for α ∈ (N ∪ T)∗,w ∈ T∗)

Initial call:
top-down(w,S)

4

The recognizer (2)

Top-down recognizer
def top-down(w,α):

out = false
if w == α == ε:

out = true
elif w == aw′ and α == aα′:

out = top-down(w′,α′) scan
elif α == Xα′ with X ∈ N:

for X → X1 . . .Xk in P:
if top-down(w, X1 . . .Xkα

′): predict
out = true

return out

5

The recognizer (3)

This is exactly what the LL-PDA for a CFG does (see PDA slides):

start with stack Z0 and q0.

δ(q0, ε,Z0) = {〈q1, SZ0〉}
〈q1, α〉 ∈ δ(q1, ε,A) for all A→ α

〈q1, ε〉 ∈ δ(q1, a, a) for all a ∈ T .

δ(q1, ε,Z0) = {〈qf , ε〉}

6

The recognizer (4)

Example: Top-down recognizer

G = 〈N,T,P, S〉, N = {A,B}, T = {a, b, c}

P = {S→ ASB |AASB | c,A→ a,B→ b}
Input w = aacb. Calls of top-down (order is depth-first)

stack α w
1. S aacb
2. ASB aacb pred(1)
3. aSB aacb pred(2)
4. SB acb scan(3)
5. ASBB acb pred(4)
6. aSBB acb pred(5)
7. SBB cb scan(6)
4 unsuccessful predicts
8. cBB cb pred(7)
scan – predict – scan

stack α w
9. b – pred
10. AASB aacb pred(1)
11. aASB aacb pred(10)
scan – predict
12. SB cb scan
4 unsuccessful predicts
13. cB cb pred(12)
14. B b scan(13)
15. b b pred(14)
16. – – scan(15)

7

The parser (1)

How to turn the recognizer into a parser:
Add an analysis stack to the parser that allows you to construct the
parse tree.
Assume that for each A ∈ N, the righthand sides of A-productions are
numbered (have indices).
Whenever

a production is applied (prediction step), the lefthand side is
pushed on the analysis stack together with the index of the right-
hand side;

a terminal a is scanned, a is pushed on the analysis stack.
(This is needed for backtracking in a depth-first strategy.)

8

The parser (2)

Top-down parser
def top-down(w,α,Γ):

out = false
if w == α == ε:

output Γ
out = true

elif w == aw′ and α == aα′:
out = top-down(w′,α′, aΓ)

elif α == Xα′ with X ∈ N:
for X → X1 . . .Xk in P with rhs-index i:

if top-down(w, X1 . . .Xkα
′, 〈X, i〉Γ):

out = true
return out

9

The recognizer (3)

Example: Top-down parser

G = 〈N,T,P, S〉, N = {A,B}, T = {a, b, c}

P = {S→ ASB |AASB | c,A→ a,B→ b}
Input w = aacb. Consider only the successful predicts and scans (Xi is a
notation for 〈X,i〉):

stack α w analysis stack
S aacb

AASB aacb S2
aASB aacb A1S2
ASB acb aA1S2
aSB acb A1aA1S2
SB cb aA1aA1S2
cB cb S3aA1aA1S2
B b cS3aA1aA1S2
b b B1cS3aA1aA1S2
– – bB1cS3aA1aA1S2

the analysis stack
gives a leftmost
derivation in
reverse order.

Leftmost derivation:
S2A1A1S3B1

10

The parser (4)

Problematic grammars for this parser: CFGs that allow for
left-recursions. Solutions:

Eliminate the left-recursion.
Drawback: derivation trees change considerably.

Make sure, grammar does not contain ε-productions or loops.
Then do an additional check (when predicting):

...
then for all X → X1 . . .Xk:

if |w| ≥ |X1 . . .Xkα
′|

and top-down(w, X1 . . .Xkα
′)

then out := true;

This check is useful even for grammars that are not left-recursive.

11

An example (1)

Grammar
S→ AB
A→ aAB | a
B→ b

S ∗⇒ aabb ?

AB ∗⇒ aabb ?

aB ∗⇒ aabb ?

B ∗⇒ abb ?

b ∗⇒ abb ?

aABB ∗⇒ aabb ?

ABB ∗⇒ abb ?

aBB ∗⇒ abb ?

BB ∗⇒ bb ?

bB ∗⇒ bb ?

B ∗⇒ b ?

b ∗⇒ b ?

ε
∗⇒ ε ?

aABBB ∗⇒ abb ?

ABBB ∗⇒ bb ?

aBBB ∗⇒ bb ?aABBBB ∗⇒ bb ?

(basic algorithm)

12

An example (2)

(check that
word length ≥
length of
sentential form)

S ∗⇒ aabb ?

AB ∗⇒ aabb ?

aB ∗⇒ aabb ?

B ∗⇒ abb ?

b ∗⇒ abb ?

aABB ∗⇒ aabb ?

ABB ∗⇒ abb ?

aBB ∗⇒ abb ?

BB ∗⇒ bb ?

bB ∗⇒ bb ?

B ∗⇒ b ?

b ∗⇒ b ?

ε
∗⇒ ε ?

13

Control structures (1)

In general, directional top-down parsing is non-deterministic because
of multiple righthand sides for single non-terminals.
Two different control strategies: You can

either proceed depth-first (proceed the righthand sides one after
the other, each time pursuing the possible derivation tree up to
the moment where we either find a parse tree or fail)
If we fail, we have to go back and try the next possibility (back-
tracking). For this, we have to reverse the operations made on
the stacks.

or proceed breadth-first (try all righthand sides in parallel)
Usually, all possible predicts are done before scanning the next
input symbol.

These are different control structures, they are not part of the general
top-down parsing algorithm.

14

Control structures (2)

Advantages and disadvantages:
Breadth-first:

Needs a lot of memory.

Depth-first (backtracking):

Does not need much memory.

If all parse trees are searched for and the grammar is known to
be ambiguous, more time-consuming than breadth-first.

⇒ No perfect solution. The best option depends on the grammar, the
input, the task (exhaustive parsing or not), the programming language
used. . .

15

Parser generators (1)

In general, we can

either implement a general CFG parser (perhaps for a restricted
type of CFG) that takes G and w as input

w,G Parser parse trees/no

or generate a specific parser for a given grammar. The new
parser receives only w as input.

G

w

Parser generator Parser parse trees/no

16

Parser generators (2)

Parser generators for top-down (LL) parsers often use a technique
called recursive descent:

for each non-terminal X, a procedure is generated that tries all
rhs of X-productions with calls for all non-terminals it encoun-
ters (one procedure ' one production)

procedures can call each other, in particular, they can call (di-
rectly or via other intermediate calls) itself again (recursive)

Some recursive descent parser generators:

JavaCC, Java Compiler Compiler:
https://javacc.dev.java.net/

ANTLR, ANother Tool for Language Recognition (generates
C++, Java, Python, C#):
http://www.antlr.org/

17

Conclusion

Important features of directional top-down parsing:

LL-parsing: input processed from left to right, constructs a left-
most derivation;

parsing steps prediction and scan;

non-deterministic in general;

different control structures (breadth-first, depth-first);

does not work for left-recursive CFGs;

parser generation with recursive descent.

18

Grune, D. and Jacobs, C. (2008). Parsing Techniques. A Practical
Guide. Monographs in Computer Science. Springer. Second Edition.

19

	Introduction
	The recognizer
	The parser
	Control structures
	Parser generators
	Conclusion

