
Idea of Thread Automata TA for Simple RCG Example General Definition of TA TA for TAG

Parsing Beyond Context-Free Grammars:
Thread Automata

Laura Kallmeyer
Heinrich-Heine-Universität Düsseldorf

Winter 2021/22

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Thread Automata 1

Idea of Thread Automata TA for Simple RCG Example General Definition of TA TA for TAG

Overview

1 Idea of Thread Automata

2 TA for Simple RCG

3 Example

4 General Definition of TA

5 TA for TAG

[Kal10]

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Thread Automata 2

Idea of Thread Automata TA for Simple RCG Example General Definition of TA TA for TAG

Idea of Thread Automata (1)

• Thread automata (TA) have been proposed in [Vil02]. See also
[Kal10] for a description of TA.
• TA accept (at least) the class of all LCFRLs, maybe even a
proper superset.
• TA are non-deterministic and, if all possibilities are pursued
independently from each other, they are of exponential
complexity.
• However, in combination with a compact representation of
sub-derivations as items and with tabulation techniques, they
become polynomial.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Thread Automata 3

Idea of Thread Automata TA for Simple RCG Example General Definition of TA TA for TAG

Idea of Thread Automata (2)

Overall idea of TA:
• We have a set of threads, one of which is the active thread.
• Each thread has a unique path that situates it within the

tree-shaped thread structure.
• Whenever a new thread is started, its path is a concatenation of

the parent thread path and a new symbol. This way, from a
given active thread, we can always find its parent thread (the one
that started it) and its daughter threads.

• The moves of the automaton are the following: We can change
the content of the active thread, start a new daughter thread or
move into an existing daughter thread, or move into the parent
thread while, eventually, terminating the active thread.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Thread Automata 4

Idea of Thread Automata TA for Simple RCG Example General Definition of TA TA for TAG

Idea of Thread Automata (3)

Example: Consider the following simple RCG for {anbnecndn | n ≥ 0}:
S(XeY)→ A(X ,Y) S(e)→ ε
A(aXb, cYd)→ A(X ,Y) A(ab, cd)→ ε

In the corresponding TA,
• we would start with an S thread.
• From here, we can read an e and then terminate.
• Or we start a daughter A thread that is suspended once the first

component is finished.
• Then we continue the mother S thread, read the e and then
resume the daughter.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Thread Automata 5

Idea of Thread Automata TA for Simple RCG Example General Definition of TA TA for TAG

Idea of Thread Automata (4)

w = aabbeccdd (only successful configurations)

thread set operation
[1 : S(•XeY)→ A(X ,Y)]
[1 : . . .], [11 : A(•aXb, cYd)→ A(X ,Y)] predict
[1 : . . .], [11 : A(a • Xb, cYd)→ A(X ,Y)] scan
[1 : . . .], [11 : . . .], [111 : A(•ab, cd)→ ε] predict
[1 : . . .], [11 : . . .], [111 : A(ab•, cd)→ ε] scan (twice)
[1 : . . .], [11 : A(aX • b, cYd)→ A(X ,Y)], [111 : . . .] suspend
[1 : . . .], [11 : A(aXb•, cYd)→ A(X ,Y)], [111 : . . .] scan
[1 : S(Xe • Y)→ A(X ,Y)], [11 : . . .], [111 : . . .] suspend, scan
[1 : . . .], [11 : A(aXb, •cYd)→ A(X ,Y)], [111 : . . .] resume
[1 : . . .], [11 : A(aXb, c • Yd)→ A(X ,Y)], [111 : . . .] scan
[1 : . . .], [11 : . . .] , [111 : A(ab, cd•)→ ε] resume, scan (twice)
[1 : . . .], [11 : A(aXb, cYd•)→ A(X ,Y)] suspend, scan
[1 : S(XeY •)→ A(X ,Y)] suspend

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Thread Automata 6

Idea of Thread Automata TA for Simple RCG Example General Definition of TA TA for TAG

Idea of Thread Automata (5)

• TA for simple RCGs perform a top-down recognition.
• If an additional tabulation is included, the automaton amounts to
an incremental Earley recognition.
• [Vil02] has implemented TA in general.
• [KM09] implements an incremental Earley chart parsing of
ordered simple RCG following the same strategy.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Thread Automata 7

Idea of Thread Automata TA for Simple RCG Example General Definition of TA TA for TAG

TA for Simple RCG (1)

[Vil02] gives a general definition of TA and shows then how to
construct equivalent TA for Tree Adjoining Grammars and for simple
RCGs.

In the following, we first introduce the specific TA for ordered simple
RCGs that we call SRCG-TA. Only later, general TA are defined.

We call a simple RCG rule with a dot in the lhs a dotted rule.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Thread Automata 8

Idea of Thread Automata TA for Simple RCG Example General Definition of TA TA for TAG

TA for Simple RCG (2)

Definition 1 (Thread Automaton for Simple RCG)
A thread automaton for an ordered simple RCG G = 〈NG ,TG , SG ,PG〉
(SRCG-TA) is a tuple 〈N,T ,S ′, ret,U ,Θ〉 where
• N = NG ∪ {S ′, ret} ∪ {γ | γ is a dotted rule in G}, T = TG are
the non-terminals and terminals with S ′, ret ∈ N \ NG the start
and end symbols;
• U = {1, . . . ,m} where m the maximal rhs length in G is the set
of labels used to identify threads.
• Θ is a finite set of transitions.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Thread Automata 9

Idea of Thread Automata TA for Simple RCG Example General Definition of TA TA for TAG

TA for Simple RCG (3)
A configuration is a tree-shaped set of threads, one of them being the
active thread, together with a position in the input that separates the
part that has been recognized from the remaining part of the input.

Every thread has a thread path p ∈ U and its content is a
non-terminal symbol.

Definition 2 (Thread, Configuration)
Let M = 〈N,T ,S ′, ret,U ,Θ〉 be a SRCG-TA.
• A thread is a pair p : A with p ∈ U∗,A ∈ N. p is the thread

path, and A is the content of the thread.
• A thread store is a set of threads whose addresses are closed by

prefix.
• A configuration of M is a tuple 〈i , p,S〉 where i is an input
position, S is a thread store and p is a thread path in S.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Thread Automata 10

Idea of Thread Automata TA for Simple RCG Example General Definition of TA TA for TAG

TA for Simple RCG (4)
The transitions defined within Θ are the following:
• Call starts a new thread, either for the start predicate or for a daughter

predicate:

If active thread [p : S ′], then add new thread [p1 : S] (where S start
symbol of G), set active thread to p1.

S ′ → [S ′]S (initial call),

If active thread [p : γ], γ a dotted rule with the dot (position k, j)
preceding the first variable of the rhs non-terminal A and A is the ith
rhs element, then add new thread [pi : A] and set active thread to pi .
γk,j → [γk,j]A if κ(γk,j) = A.

• Predict predicts a new clause for a non-terminal:
If active thread [p : A] with A ∈ NG and if γ is a dotted A-rule with the
dot at the leftmost position, then replace active thread with [p : γ].
A→ γ1,0 for all A-clauses γ.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Thread Automata 11

Idea of Thread Automata TA for Simple RCG Example General Definition of TA TA for TAG

TA for Simple RCG (5)

• Scan moves the dot over a terminal in the left-hand side while
scanning the next input symbol:

If input position i and active thread [p : γ] where γ a dotted rule
such that the dot precedes a terminal that is the (i + 1)st input
symbol, then move dot over this terminal in active thread and
increment input position.

γk,i
γ(k,i+1)→ γk,i+1 if γ(k, i + 1) is a terminal.

• Publish marks the end of a predicate:

If active thread [p : γ] where γ a dotted rule such that the dot is
at the end of the lhs, then replace active thread with [p : ret].
γk,j

ε→ ret where the arity of the left-hand side predicate in γ is k
and the kth argument in the left-hand side has length j .

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Thread Automata 12

Idea of Thread Automata TA for Simple RCG Example General Definition of TA TA for TAG

TA for Simple RCG (6)

• Suspend suspends a daughter thread and resumes the parent:
1 If [pi : ret] is the active thread and in its parent thread [p : γ] the

dot precedes the last variable of the ith rhs element, then remove
active thread, move dot over this variable in p thread and set
active thread to p.
[γk,i]ret → γk,i+1 if γ(k, i + 1) is a variable that is the last
argument of a right-hand side predicate in γ, and

2 If [pi : γ] is the active thread with the dot at the end of the jth
lhs component, the jth component is not the last, and if the
parent thread is [p : β] with the dot preceding the variable that is
the jth argument of the ith rhs element, then move the dot over
this variable in the p thread and set active thread to p.
[γk,i]βl,j → γk,i+1[βl,j] if γ(k, i + 1) is a variable X , β is a
B-clause and X is the lth argument of B in the right-hand side of
γ but not its last argument, and the lth argument of the left-hand
side in β has length j .

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Thread Automata 13

Idea of Thread Automata TA for Simple RCG Example General Definition of TA TA for TAG

TA for Simple RCG (7)

• Resume resumes an already present daughter thread:

If active thread is [p : γ] where the dot precedes a variable that is
the jth (j > 1) argument of the ith rhs element and if pi : β] is
the daughter thread where the dot is at the end of the (j − 1)th
lhs argument, then move the dot to the beginning of the jth lhs
argument in the pi thread and set active thread to pi .

γk,i [βl ,j]→ [γk,i]βl+1,0 if γ(k, i + 1) is a variable X , β is a
B-clause and X is the (l + 1)th argument of B in the right-hand
side of γ, and the lth argument of the left-hand side in β has
length j .

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Thread Automata 14

Idea of Thread Automata TA for Simple RCG Example General Definition of TA TA for TAG

TA for Simple RCG (8)
The set of possible configurations C(M,w) for a given input SRCG-TA M
and a given input w contains all configurations that are reachable from
〈0, ε, {[ε : S ′]}〉 via the reflexive transitive closure of the transitions.
We can define the set of possible configurations, based on these operations.
For this, we use deduction rules. The initial configuration is the active
thread ε : S with input position 0. The final configuration (i.e., the goal
item) has input position |w | = n and contains the thread u : F where
u = δ(S) as active thread and the still present initial thread ε : aS.
The language of a SRCG-TA is the set of words that allow us, starting from
the initial thread set {ε : S ′}, to reach the set {ε : S ′, 1 : ret} after having
scanned the entire input.

Definition 3 (Language)
Let M = 〈N,T , S ′, ret,U ,Θ〉 be a SRCG-TA. The language of M is defined
as follows:

L(M) = {w | 〈|w |, 1, {ε : S ′, 1 : ret}〉 ∈ C(M,w)}.
Kallmeyer | WS 2021/22 Parsing Beyond CFG: Thread Automata 15

Idea of Thread Automata TA for Simple RCG Example General Definition of TA TA for TAG

Example (1)

Ordered simple RCG with the following rules:
α : S(XYZ)→ A(X ,Y ,Z)
β : A(aX , aY , aZ)→ A(X ,Y ,Z)
γ : A(b, b, b)→ ε

We encode dotted rules as ri ,j where r the name of the rule, 〈i , j〉 the
position of the dot: the dot precedes the j element of the ith
argument of the lhs.

Ex.: β2,0 encodes A(aX , •aY , aZ)→ A(X ,Y ,Z)

Input w = ababab.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Thread Automata 16

Idea of Thread Automata TA for Simple RCG Example General Definition of TA TA for TAG

Example (2)

thread set rem. input
ε : S ′ ababab
ε : S ′, 1 : S ababab call
ε : S ′, 1 : α1,0 ababab predict
ε : S ′, 1 : α1,0, 11 : A ababab call
ε : S ′, 1 : α1,0, 11 : β1,0 ababab predict
ε : S ′, 1 : α1,0, 11 : β1,1 babab scan
ε : S ′, 1 : α1,0, 11 : β1,1, 111 : A babab call
ε : S ′, 1 : α1,0, 11 : β1,1, 111 : γ1,0 babab predict
ε : S ′, 1 : α1,0, 11 : β1,1, 111 : γ1,1 abab scan
ε : S ′, 1 : α1,0, 11 : β1,2, 111 : γ1,1 abab suspend
ε : S ′, 1 : α1,1, 11 : β1,2, 111 : γ1,1 abab suspend

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Thread Automata 17

Idea of Thread Automata TA for Simple RCG Example General Definition of TA TA for TAG

Example (3)

ε : S ′, 1 : α1,1, 11 : β2,0, 111 : γ1,1 abab resume
ε : S ′, 1 : α1,1, 11 : β2,1, 111 : γ1,1 bab scan
ε : S ′, 1 : α1,1, 11 : β2,1, 111 : γ2,0 bab resume
ε : S ′, 1 : α1,1, 11 : β2,1, 111 : γ2,1 ab scan
ε : S ′, 1 : α1,1, 11 : β2,2, 111 : γ2,1 ab suspend
ε : S ′, 1 : α1,2, 11 : β2,2, 111 : γ2,1 ab suspend
ε : S ′, 1 : α1,2, 11 : β3,0, 111 : γ2,1 ab resume
ε : S ′, 1 : α1,2, 11 : β3,1, 111 : γ2,1 b scan
ε : S ′, 1 : α1,2, 11 : β3,1, 111 : γ3,0 b resume
ε : S ′, 1 : α1,2, 11 : β3,1, 111 : γ3,1 ε scan
ε : S ′, 1 : α1,2, 11 : β3,1, 111 : ret ε publish
ε : S ′, 1 : α1,2, 11 : β3,2 ε suspend

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Thread Automata 18

Idea of Thread Automata TA for Simple RCG Example General Definition of TA TA for TAG

Example (4)

ε : S ′, 1 : α1,2, 11 : ret ε publish
ε : S ′, 1 : α1,3 ε suspend
ε : S ′, 1 : ret ε publish

Input accepted with the last configuration.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Thread Automata 19

Idea of Thread Automata TA for Simple RCG Example General Definition of TA TA for TAG

General Definition of TA (1)

We will now give the general definition of TA.

Definition 4 (Thread Automaton)
A Thread Automaton is a tuple 〈N,T ,S,F , κ,K, δ,U ,Θ〉 where
• N and T are non-terminal and terminal alphabets with S,F ∈ N
the start and end symbols;
• κ, the triggering function, is a partial function from N to some
finite set K
• U is a finite set of labels used to identify threads.
• δ is a partial function from N to U ∪ {⊥} used to specify
daughter threads that can be created or resumed at some point.
• Θ is a finite set of transitions.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Thread Automata 20

Idea of Thread Automata TA for Simple RCG Example General Definition of TA TA for TAG

General Definition of TA (2)

In the simple RCG case, κ is not needed, i.e., can just be the identity
function.

δ is used to indicate, for the dot preceding a given variable in the lhs,
which of the rhs elements contains this variable as an argument. This
determines the daughter thread that processes this variable.
Whenever the dot is at the end of a component, δ has value ⊥, and
when preceding a terminal, it is undefined.

Example: Assuming a rule α : A(XY , aZ)→ A(X ,Z)B(Y), we have

δ(α10) = δ(α21) = 1, δ(α11) = 2,
δ(α12) = δ(α22) = ⊥, δ(α20) undefined

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Thread Automata 21

Idea of Thread Automata TA for Simple RCG Example General Definition of TA TA for TAG

General Definition of TA (3)

Definition 5 (TA Transitions)
Let M = 〈N,T ,S,F , κ,K, δ,U ,Θ〉 be a TA. All transitions in Θ have
one of the following forms:
• B α→ C with B,C ∈ N, α ∈ T ∗ (SWAP operation)
• b → [b]C with b ∈ K,C ∈ N (PUSH operation)
• [B]C → D with B,C ,D ∈ N (POP operation)
• b[C]→ [b]D with b ∈ K,C ,D ∈ N (SPUSH operation)
• [B]c → D[c] with c ∈ K,B,D ∈ N (SPOP operation)

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Thread Automata 22

Idea of Thread Automata TA for Simple RCG Example General Definition of TA TA for TAG

General Definition of TA (4)

The set of configurations for w , C(M,w), is then defined by the
following deduction rules:

• Initial configuration: 〈0, ε, {ε : S}〉

• Swap: 〈i , p,S ∪ p : B〉
〈i + |α|, p,S ∪ p : C〉 B α→ C ,wi+1 . . .wi+|α| = α

• Push:
〈i , p,S ∪ p : B〉

〈i , pu,S ∪ p : B ∪ pu : C〉
b → [b]C , κ(B) = b, δ(B) = u,
pu /∈ dom(S)

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Thread Automata 23

Idea of Thread Automata TA for Simple RCG Example General Definition of TA TA for TAG

General Definition of TA (5)

• Pop:
〈i , pu,S ∪ p : B ∪ pu : C〉

〈i , p,S ∪ p : D〉 [B]C → D, δ(C) = ⊥, pu /∈ dom(S)

• Spush:
〈i , p,S ∪ p : B ∪ pu : C〉
〈i , pu,S ∪ p : B ∪ pu : D〉 b[C]→ [b]D, κ(B) = b, δ(B) = u

• Spop:
〈i , pu,S ∪ p : B ∪ pu : C〉
〈i , p,S ∪ p : D ∪ pu : C〉 [B]c → D[c], κ(C) = c, δ(C) = ⊥

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Thread Automata 24

Idea of Thread Automata TA for Simple RCG Example General Definition of TA TA for TAG

General Definition of TA (6)

The language of a TA is the set of words that allow us, starting from
the initial thread set {ε : S}, to reach the set {ε : S, δ(S) : F} after
having scanned the entire input.

Definition 6 (Language)
Let M = 〈N,T ,S,F , κ,K, δ,U ,Θ〉 be a TA,
The language of M is defined as follows:

L(M) = {w | 〈n, δ(S), {ε : S, δ(S) : F}〉 ∈ C(M,w)}.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Thread Automata 25

Idea of Thread Automata TA for Simple RCG Example General Definition of TA TA for TAG

General Definition of TA (7)

Take again the TA equivalent to the simple RCG with the following
clauses:
α : S(XYZ)→ A(X ,Y ,Z)
β : A(aX , aY , aZ)→ A(X ,Y ,Z)
γ : A(b, b, b)→ ε

Transitions of the corresponding TA (start symbol S ′):
Call: S ′ → [S ′]S α1,0 → [α1,0]A β1,1 → [β1,1]A

Predict: S → α1,0 A→ β1,0 A→ γ1,0

Scan: β1,0
a→ β1,1 β2,0

a→ β2,1 β3,0
a→ β3,1

γ1,0
b→ γ1,1 γ2,0

b→ γ2,1 γ3,0
b→ γ3,1

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Thread Automata 26

Idea of Thread Automata TA for Simple RCG Example General Definition of TA TA for TAG

General Definition of TA (8)

Suspend:
[α1,0]β1,2 → α1,1[β1,2] [α1,1]β2,2 → α1,2[β2,2] [α1,2]ret → α1,3
[α1,0]γ1,1 → α1,1[γ1,1] [α1,1]γ2,1 → α1,2[γ2,1]
[β1,1]β1,2 → β1,2[β1,2] [β2,1]β2,2 → β2,2[β2,2] [β3,1]ret → β3,2
[β1,1]γ1,1 → β1,2[γ1,1] [β2,1]γ2,1 → β2,2[γ2,1]

Resume:
α1,1[β1,2]→ [α1,1]β2,0 β2,1[β1,2]→ [β2,1]β2,0
α1,1[γ1,0]→ [α1,1]γ2,0 β2,1[γ1,0]→ [β2,1]γ2,0
α1,2[β2,2]→ [α1,2]β3,0 β2,1[β2,2]→ [β2,1]β3,0
α1,2[γ2,0]→ [α1,2]γ3,0 β3,1[γ2,0]→ [β3,1]γ3,0

Publish:
α1,3 → ret β3,2 → ret γ3,1 → ret

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Thread Automata 27

Idea of Thread Automata TA for Simple RCG Example General Definition of TA TA for TAG

TA for TAG (1)

• We use the position left/right above/below (depicted with a dot)
that we know from the TAG Earley parsing.
• Whenever, in the active thread, we are left above a possible
adjunction site, we can predict an adjunction by starting a
sub-thread (PUSH).
• When reaching the position left above a foot node, we can
suspend the thread and resume the parent (SPOP).
• Whenever we arrive right below an adjunction site, we can
resume the daughter of the adjoined tree whose content is the
foot node (SPUSH).
• Whenever we arrive right above the root of an auxiliary tree, we
do a POP, i.e., finish this thread and resume the parent.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Thread Automata 28

Idea of Thread Automata TA for Simple RCG Example General Definition of TA TA for TAG

TA for TAG (2)

• We use a special symbol ret to mark the fact that we have
completely traversed the elementary tree and we can therefore
finish this thread.
• Besides moving this way from one elementary tree to another, we
can move down, move left and move up inside a single
elementary tree (while eventually scanning a terminal) using the
SWAP operation.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Thread Automata 29

Idea of Thread Automata TA for Simple RCG Example General Definition of TA TA for TAG

TA for TAG (3)

Example:

Elementary trees:

Rα

c

Rβ

a F b

(Rα and Rβ allow for adjunction of β.)

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Thread Automata 30

Idea of Thread Automata TA for Simple RCG Example General Definition of TA TA for TAG

TA for TAG (4)

Sample thread set of corresponding TA for input aacbb:

thread set operation
[1 : •Rα]
[1 : •Rα], [11 : •Rβ] PUSH
[1 : •Rα], [11 : •Rβ], [111 : •Rβ] PUSH
[1 : •Rα], [11 : •Rβ], [111 : •Rβ] SWAP
[1 : •Rα], [11 : •Rβ], [111 : •a] SWAP
[1 : •Rα], [11 : •Rβ], [111 : a•] SWAP (scan a)
[1 : •Rα], [11 : •Rβ], [111 : •F] SWAP
[1 : •Rα], [11 : •Rβ], [111 : •F] SPOP
[1 : •Rα], [11 : •a], [111 : •F] SWAP
[1 : •Rα], [11 : a•], [111 : •F] SWAP (scan a)
[1 : •Rα], [11 : •F], [111 : •F] SWAP

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Thread Automata 31

Idea of Thread Automata TA for Simple RCG Example General Definition of TA TA for TAG

TA for TAG (5)

[1 : •Rα], [11 : •F], [111 : •F] SPOP
[1 : •c], [11 : •F], [111 : •F] SWAP
[1 : c•], [11 : •F], [111 : •F] SWAP (scan c)
[1 : Rα•], [11 : •F], [111 : •F] SWAP
[1 : Rα•], [11 : F •], [111 : •F] SPUSH
[1 : Rα•], [11 : •b], [111 : •F] SWAP
[1 : Rα•], [11 : b•], [111 : •F] SWAP (scan b)
[1 : Rα•], [11 : Rβ•], [111 : •F] SWAP
[1 : Rα•], [11 : Rβ•], [111 : F •] SPUSH
[1 : Rα•], [11 : Rβ•], [111 : •b] SWAP
[1 : Rα•], [11 : Rβ•], [111 : b•] SWAP (scan b)

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Thread Automata 32

Idea of Thread Automata TA for Simple RCG Example General Definition of TA TA for TAG

TA for TAG (6)

[1 : Rα•], [11 : Rβ•], [111 : Rβ•] SWAP
[1 : Rα•], [11 : Rβ•], [111 : Rβ•] SWAP
[1 : Rα•], [11 : Rβ•], [111 : ret] SWAP
[1 : Rα•], [11 : Rβ•] POP
[1 : Rα•], [11 : ret] SWAP
[1 : Rα•] POP
[1 : ret] SWAP

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Thread Automata 33

Idea of Thread Automata TA for Simple RCG Example General Definition of TA TA for TAG

TA for TAG (7)

TA for our sample TAG:

M = 〈N,T ,S, ret, κ,K, δ,U ,Θ〉 is as follows:
• N contains all symbols •X , •X ,X•,X • where X is a node in one
of the elementary trees, i.e., X ∈ {Rα, c,Rβ, a,F , b}.
Furthermore, N contains a special symbol ret and a special
symbol S.
• T = {a, b, c}.
• S is the initial thread symbol and ret is the final thread symbol.
• K = N, κ(A) = A for all A ∈ N.
• U = {1}, δ(X) = 1 for all

A ∈ N \ {•F , ret}, δ(ret) = ⊥, δ(•F) = ⊥.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Thread Automata 34

Idea of Thread Automata TA for Simple RCG Example General Definition of TA TA for TAG

TA for TAG (8)

• Transitions Θ:

S → [S]•Rα start initial tree
•Rα → •Rα, •Rβ → •Rβ predict no adjunction
•Rα → •c, •Rβ → •a move down
•c c→ c•, •a a→ a•, •b b→ b• scan
a• → •F , F • → •b move right
c• → Rα•, b• → Rβ• move up
Rα• → Rα•, Rβ• → Rβ• move up if no adjunction
•Rα → [•Rα]•Rβ , •Rβ → [•Rβ]•Rβ predict adjoined tree
[•Rα]•F → •Rα[•F], [•Rβ]•F → •Rβ[•F] back to adjunction site
Rα•[•F]→ [Rα•]F •, Rβ•[

•F]→ [Rβ•]F
• resume adjoined tree

Rα• → ret, Rβ• → ret complete elementary tree
[Rα•]ret → Rα•, [Rβ•]ret → Rβ• terminate adjunction, go back

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Thread Automata 35

References I

[Kal10] Laura Kallmeyer.
Parsing Beyond Context-Free Grammars.
Cognitive Technologies. Springer, Heidelberg, 2010.

[KM09] Laura Kallmeyer and Wolfgang Maier.
An incremental Earley parser for simple Range Concatenation Grammar.
In Proceedings of IWPT 2009, 2009.

[Vil02] Éric Villemonte de La Clergerie.
Parsing mildly context-sensitive languages with thread automata.
In Proc. of COLING’02, August 2002.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Thread Automata 36

	Idea of Thread Automata
	

	TA for Simple RCG
	

	Example
	

	General Definition of TA
	

	TA for TAG
	

	Appendix

