Parsing Beyond CFG
 Homework 7: Linear Context-free Rewriting Systems (LCFRS)

Laura Kallmeyer

Question 1

Consider the following LCFRS in sRCG format:

$$
G=\left\langle\{A, B, C, S\},\{a, b, c, d, e\},\left\{X_{1}, X_{2}, X_{3}, Y_{1}, Y_{2}, Z_{1}, Z_{2}\right\}, P, S\right\rangle
$$

where

$$
P= \begin{cases} & S\left(Z_{1} X_{1} Y_{1} X_{2} Y_{2} X_{3} Z_{2}\right) \rightarrow C\left(Z_{1}, Z_{2}\right) A\left(X_{1}, X_{2}, X_{3}\right) B\left(Y_{1}, Y_{2}\right), \\ & A\left(a X_{1}, b X_{2}, e X_{3}\right) \rightarrow A\left(X_{1}, X_{2}, X_{3}\right), \\ & B\left(d Y_{1}, d Y_{2}\right) \rightarrow B\left(Y_{1}, Y_{2}\right) \\ & A(a, b, e) \rightarrow \epsilon \\ & B(d, d) \rightarrow \epsilon \\ & C(c c, c c) \rightarrow \varepsilon\end{cases}
$$

1. What do the yields of A, B and C look like, given this grammar?
2. What is the string language generated by this LCFRS?
3. Give the same LCFRS in MCFG notation, i.e., with separate composition functions F that describe for each rule how to compute the yield of the righthand side non-terminal from the yields of the lefthand side non-terminals.

Solution:

1. yield $(\mathrm{C})=\{\langle c c, c c\rangle\}$;
$\operatorname{yield}(\mathrm{B})=\left\{\left\langle d^{n}, d^{n}\right\rangle \mid n \geq 1\right\} ;$
$\operatorname{yield}(\mathrm{A})=\left\{\left\langle a^{n}, b^{n}, e^{n}\right\rangle \mid n \geq 1\right\}$
2. $L=\left\{c c a^{n} d^{m} b^{n} d^{m} e^{n} c c \mid n, m \geq 1\right\}$
3.

$$
G^{\prime}=\left\langle\{A, B, C, S\},\{a, b, c, d, e\}, F, P^{\prime}, S\right\rangle
$$

where

$$
P^{\prime}=\left\{S \rightarrow f_{1}[C, A, B], \quad A \rightarrow f_{2}[A], \quad B \rightarrow f_{3}[B], \quad A \rightarrow f_{4}[], \quad B \rightarrow f_{5}[], \quad C \rightarrow f_{6}[]\right\}
$$

and

$$
F= \begin{cases} & f_{1}\left[\left\langle Z_{1}, Z_{2}\right\rangle,\left\langle X_{1}, X_{2}, X_{3}\right\rangle,\left\langle Y_{1}, Y_{2}\right\rangle\right]=\left\langle Z_{1} X_{1} Y_{1} X_{2} Y_{2} X_{3} Z_{2}\right\rangle \\ & f_{2}\left[\left\langle X_{1}, X_{2}, X_{3}\right\rangle\right]=\left\langle a X_{1}, b X_{2}, e X_{3}\right\rangle \\ & f_{2}\left[\left\langle X_{1}, X_{2}\right\rangle\right]=\left\langle d X_{1}, d X_{2}\right\rangle \\ & f_{4}[]=\langle a, b, e\rangle \\ & f_{5}[]=\langle d, d\rangle \\ & f_{6}[]=\langle c c, c c\rangle\end{cases}
$$

Question 2

Give an LCFRS in the sRCG format (the format from the previous exercise) for the language

$$
L=\left\{w w w^{R} w^{R} \mid w \in\{a, b\}^{*}, w^{R} \text { is } w \text { in reverse order }\right\}
$$

Solution:

$$
G=\langle\{A, S\},\{a, b\},\{W, X, Y, Z\}, P, S\rangle
$$

where

$$
P= \begin{cases} & S(W X Y Z) \rightarrow A(W, X, Y, Z), \quad A(\varepsilon, \varepsilon, \varepsilon, \varepsilon) \rightarrow \varepsilon \\ & A(a W, a X, Y a, Z a) \rightarrow A(W, X, Y, Z), \quad A(b W, b X, Y b, Z b) \rightarrow A(W, X, Y, Z) \quad\}\end{cases}
$$

Alternative solution with fan-out 3:

$$
P= \begin{cases}\quad & S(W X Z) \rightarrow A(W, X, Z), \quad A(\varepsilon, \varepsilon, \varepsilon) \rightarrow \varepsilon \\ & A(a W, a X a, Z a) \rightarrow A(W, X, Z), \quad A(b W, b X b, Z b) \rightarrow A(W, X, Z) \quad\}\end{cases}
$$

Question 3 Consider the following TAG:

$\beta: \quad T_{S A(\beta)}$
$\overbrace{b T^{*}{ }_{N A} b} b$

Adjoining at a node v means adding a tuple of 2 components, one to the left and the other to the right of all daughters of the adjunction site:

With respect to α, its span can be aaa or $a X_{1} a X_{2} a$ where in the latter case, the tuple $\left\langle X_{1}, X_{2}\right\rangle$ was added by adjoining β, i.e., it is an element in the yield of β. Similarly, in β, we can either not adjoin (leads to tuple $\langle b, b\rangle$) or adjoin at the root.

Give a corresponding LCFRS with nonterminals $\{\alpha, \beta\}$, terminals $\{a, b\}$, start symbol α and rules that do exactly these concatenations.

Rules: $\alpha(a a a) \rightarrow \varepsilon, \alpha\left(a X_{1} a X_{2} a\right) \rightarrow \beta\left(X_{1}, X_{2}\right), \beta(b, b) \rightarrow \varepsilon, \beta\left(X_{1} b, b X_{2}\right) \rightarrow \beta\left(X_{1}, X_{2}\right)$.

