Parsing Beyond CFG Homework 10: Data-driven LCFRS Parsing

Laura Kallmeyer

Question 1

Consider the following treebank tree ${ }^{1}$:

Assuming that we extract LCFRS rules from this tree, how do they look like?
Question 2 Consider the following PLCFRS (the numbers in parentheses are the log values of the probabilities):

```
1(0):S(XYZ) }->A(X,Z)B(Y
0.8(-0.1):A(X,Y) ->B(X) D(X) 0.2(-0.7):A(X,Y) ->C(X) D(X)
0.5(-0.3): B(b)->\varepsilon 0.5 (-0.3):B(c)->\varepsilon
1(0):C(b)->\varepsilon 1(0):D(d)->\varepsilon
```

Perform a weighted deductive CYK parsing for the input bbd using this grammar.

1. Give the trace in a table. The left column lists in every step only the item that has been added to the chart in the last step; the right column lists all items that are in the agenda, including their weights.

Chart	Agenda
	$0:[C,\langle\langle 0,1\rangle\rangle], 0:[C,\langle\langle 1,2\rangle\rangle], 0:[D,\langle\langle 2,3\rangle\rangle],-0.3:[B,\langle\langle 0,1\rangle\rangle],-0.3:[B,\langle\langle 1,2\rangle\rangle]$
$0:[C,\langle\langle 0,1\rangle\rangle]$	$0:[C,\langle\langle 1,2\rangle\rangle], 0:[D,\langle\langle 2,3\rangle\rangle],-0.3:[B,\langle\langle 0,1\rangle\rangle],-0.3:[B,\langle\langle 1,2\rangle\rangle]$
$0:[C,\langle\langle 1,2\rangle\rangle]$	$0:[D,\langle\langle 2,3\rangle\rangle],-0.3:[B,\langle\langle 0,1\rangle\rangle],-0.3:[B,\langle\langle 1,2\rangle\rangle]$
\ldots	\ldots

2. Given the weight of the goal item, what is the probability of the corresponding derivation? (Hint: weights are log ${ }_{10}$ values.)
[^0]
[^0]: ${ }^{1}$ Adapted from rrgparbank.phil.hhu.de.

