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Supertagging: Idea

• Supertagging is similar to POS-tagging
• Supertags = super part of speech tags [JS94]
• Computation of a linguistic structure can be localized if lexical
items are associated with rich descriptions (supertags)

• Local ambiguity (i.e. the choice of supertags) can be resolved by
using statistical distributions of supertag co-occurences
? these statistics are collected from a corpus of parses
? for example, from an LTAG-annotated treebank

• These supertag disambiguation results in a representation which
is effectively a parse (an almost parse)
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Supertagging: Extraction of the supertags
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Extraction of the supertags
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Creating a lexicon of token-supertags pairs

• N-to-M relation: one token can have several supertags
• One supertag can be attached to several tokens
• Every supertag has an assigned probability (dependent on the context)

tokens these businesses will perform well
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Supertagging: idea

Sentence: These businesses will perform well

Supertag set: α1 α2 α3 α4 α5
α6 α7 α8 α9 α10
β1 β2 β3 α12 β4

Final assignement β1 α7 β3 α12 β4
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Supertagging: statistics

• The number of distinct LTAG supertags extracted from different
treebanks is different, but is approximately around 4000 (see the
table below)

• Almost the half of all supertags appear just once in an
LTAG-annotated corpus

French German English
French Treebank TiGer Treebank Penn Treebank

Parameters [BvCSK18] [Kae12] [KFM+17]

Distinct supertags 5145 3426 4727
Supertags occur. once 2693 1562 2165
POS tags 13 53 36
Sentences 21550 50000 44168
Avg. sentence length (in tokens) 31.34 17.51 appr. 20
Accuracy 78.54 88.51 89.32

Supertagging statistics with different Treebanks [BvCSK18]
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Side note: sister adjunction
Instead of standard adjunction (or maybe in addition), some
approaches also use sister adjunction [Kae12, BvCSK18]:
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• Sister adjunction produces flat structures (no binarization needed
before extracting modifier trees)

• TAG with only substutiton and sister adjunction is weakly
equivalent to CFG
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What happens if we do not use supertagging?

• Supertagging makes a pre-choice of possible supertags before
actual parsing.

• Supertagging reduces the work of the parser.
• If we do not use a supertagging step, the parser’s job looks as
follows:
? Pick all possible supertags from the big lexicon of tokens for every

token in the sentence
⇒ we might end up with hundreds of possible supertags for every
item in the sentence

? Try to figure out the right combination of the supertags to derive
a parse of the whole sentence
⇒ might lead to high computational costs for every sentence –
depending on the implemented parsing algorithm
⇒ Leading, for example, to long reaction times of the parser
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N-best supertagging [HH04]
• 1-best supertagging:

? Predict for every token in a sentence just one possible supertag
• n-best supertagging:

? Predict for every token in a sentence a set of most probable supertags
(2-best, 3-best, 5-best etc.)
⇒ increases the accuracy of the supertagger
⇒ while keeping the number of possible supertags for the
disambiguation relatively small:

n-best Accuracy
German

Accuracy
French

1-best 88.51 78.54
2-best 94.37 87.34
3-best 96.08 90.85
5-best 97.45 94.38
7-best 98.03 96.00
10-best 98.52 97.08

Table : N-best supertagging experiments [BvCSK18]
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N-best supertagging [HH04]

• In order to find n best sequence hypotheses for a sequence of
coded words [HH04]:
? Let tN

1 = t1t2 . . . tN be a sequence of supertags
? for a sentence wN

1 = w1w2 . . .wN
? then the most probable supertag sequence t̂N

1 is calculated as follows:
t̂N
1 = argmaxtN

1
P(tN

1 |wN
1 )

P(tN
1 |wN

1 ) ≈
∏N

i=1 P(ti |ti−2ti−1)P(wi |ti)

Kallmeyer | WS 2021 Parsing Beyond CFG: Supertagging 13



Supertagging: Idea Supertagging models

Supertagging models

• n-gram model [JS94]
• dependency model [JS94]
• Hidden Markov Model (HMM) based supertagging [HH04]
• Neural supertagging (RNNs) [KFM+17]
• Fine-tuning of contextual language models for supertagging
[Sch21]

[Ban97, Fai09, BJ10, BJ99]
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N-gram model

• This method is sensitive to the context.
• Contextual dependency probabilities between supertags within a
window of n words

• For example, 3-gram model: accuracy of 68% [JS94]
• The probability of xi is based on the probabilities of

xi−(n−1), . . . , xi−1: P(xi |xi−(n−1), . . . , xi−1)
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Dependency model

• In the n-gram model, dependencies between supertags beyond
the window size are not captured.

• Dependency model does not have a pre-defined size of the
window

• A supertag is seen as dependent on another supertag if the
former substitutes or adjoins into the latter

• Accuracy of 77% [JS94]
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Dependency model

Sentence: These businesses will perform well

Supertag set: α1 α2 α3 α4 α5
α6 α7 α8 α9 α10
β1 β2 β3 α12 β4

Final assignement β1 α7 β3 α12 β4
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Dependency model
• A tree α4, anchored by a verb (V), has a left and a right dependent, and the

first word to the left (-1) with the tree α2 is dependent on the current word.
• The algorithm proceeds to satisfy dependency requirements of α4 in both

directions
• It picks a dependency data entry and proceeds to set up a path with the first

word to the left that has the dependent supertag label (α2)
• If the first word satisfies this requirement, an arc is set up between α2 and α4
• A successful supertag sequence is one which assigns a supertag to each

position and each supertag has all of its dependents and this sequence has
the highest probability

POS,
Supertag

Direction of
Dependent
Supertag

Dependent
Supertag

Ordinal
Position Prob.

(D, α1) ( ) - - -
(N, α2) ( – ) α1 -1 0.90
(V, α3) ( ) - - -
(V, α4) ( –,+ ) α8 -2 0.700
(V, α4) ( –,+ ) α2 -1 0.300
(V, α4) ( –,+ ) α8 +1 0.300

(ADV, α2) ( ) - - -
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HMM-based and RNN-based supertagging models

• Supertagging as a task of a sequence labeling
• Hidden Markov Models or Recurrent Neural Networks are able to capture the

dependencies between the supertags [HH04, KFM+17]
• The tokens are presented in small batches (called windows), for example 5

tokens at a time (window size = 5)
• Accuracy of about 90 %

Input

Word vectors Character 
embeddings

Layers of the
Recurrent Neural
Network (RNN)

Predicted supertags + POS tags
“the cat”

word vectors (100 dimensions):

[ [-0.075408, . . . , -0.20341, 0.17471 ],
[-0.3058, . . . , 0.41226, 0.047526 ] ]

character embeddings:

[ [22, 8, 5 ], [3, 1, 22 ] ]

supertags:

[ (NP* (DET �) ), (NP (N �) ) ]
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