
Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Parsing Beyond Context-Free Grammars:
Data-driven TAG parsing (TIG, osTAG)

Laura Kallmeyer
Heinrich-Heine-Universität Düsseldorf

slides partly done by Tatiana Bladier

Wintersemester 2021

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 1

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Overview

1 Introduction

2 Tree Insertion Grammar (TIG)

3 Earley parsing for TIGs

4 Off-spine TAG (osTAG)

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 2

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Idea: TAG parsing in cubic time

• The main disadvantage of using TAGs for practical NLP applications
are the (rather) high computation costs O(n6)

• With certain modifications and restrictions on the formalism, parsing
with TAGs in cubic time (O(n3)) is possible

• Tree insertion grammar (TIG) - a compromise between CFG and TAG
[SW95]
? Best of two worlds: efficiency of CFG parsing and lexicalizing

power of TAG
? MICA parser (off-the-shelf, freely available) for TIGs [BBN+09]

• Off-spine TAG (osTAG) – a variant of TAG with additional constraints
for cubic time parsing [SYCS13]

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 3

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Tree Insertion Grammar (TIG): motivation

• Lexicalizing of context-free grammars enables faster parsing
? Greibach normal form (1965) (without ε productions) [Gre65]

A → a
A → aA1 . . .An

• Very large output grammars ⇒ awkward or impossible to use
CFG CFG in Greibach NF

S → abSb
S → aa

S → aTbSTb
S → aTa
Ta → a
Tb → b

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 4

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Tree Insertion Grammar (TIG): motivation

• Lexicalized CFGs allow parsing in cubic time
• Conversion to lexicalized CFGs ⇒ weak lexicalization

? the strings are preserved
? derived trees are not preserved ⇒ wrong trees

• Strong lexicalization is possible with context-sensitive formalisms
? TAG, Linear indexed grammar (LIG), Combinatory categorial

grammar (CCG), linear context-free rewriting systems (LCFRS)
• Larger computation costs than CFGs (O(n6)) for TAG

• Tree Insertion Grammar is a compromise between CFG and TAG:
? Efficiency of CFG parsing and strong lexicalizing power of TAG
? TIGs can be parsed in cubic time
? Grammars are smaller compared to CFGs

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 5

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Tree Insertion Grammar
• A right (resp. left) auxiliary tree is an auxiliary tree with no
leaves to the left (resp. right) of the foot node.

VP

ADV

completely

VP∗

VP

VP∗ADV

always
• A Tree insertion grammar (TIG) [SW95] is then defined as a
TAG where all auxiliary trees are either right or left auxiliary trees
and have at least one lexical node.

• Substitution is the same as in TAG.
• Adjunction is restricted compared to TAG.
⇒ TIGs derive only context-free languages

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 6

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Tree Insertion Grammar: Restrictions on adjunction
• Only non-empty right auxiliary trees or left auxiliary trees are
allowed (see above)

NP

D↓ N

boy

VP

V

is

VP*

N

A

pretty

N*

VP

VP* ADV

quickly

S

NP↓ VP

V

eating

NP↓

• Wrapping auxiliary trees and empty auxiliary trees are forbidden

NP

PONCT↓ NP

NP* PONCT

-RRB-

NP

NP* PONCT

ε

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 7

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Right- and left-adjunction
Even with derived auxiliary trees, only right adjunction and left
adjunction is allowed:

A

A* w2w1 w4w3

A =

w1 w4

A

w2

w3

A

A*w2 w1 w4w3

A = A

A
w2

w3

w1 w4

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 8

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Wrapping adjunction

Wrapping adjunction is not allowed:

A

A*
w1 w5w3

A =

w1 w5

A

w3

w2 w4 Aw2 w4

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 9

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Right/left versus Wrapping adjunction
Example of a left adjunction:

VP

VP∗has

VP

VP

VP∗been

S

VP

V

singing

NP

the boy

;

S

VP

VP

VP

singing

has been

NP

the boy

Example of a wrapping adjunction:

VP

loudlyVP∗

VP

VP

VP∗was

S

VP

V

singing

NP

the boy

;

S

VP

VP

loudlyVP

singing

was

NP

the boy

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 10

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Tree Insertion Grammar: Restrictions on adjunction

• Simultaneous multiple adjunction is allowed (non-standard in
TAG)

VP

loudlyVP∗

VP

VP∗was

S

VP

V

singing

NP

the boy

;

S

VP

loudlyVP

VP

singing

was

NP

the boy

and

S

VP

VP

loudlyVP

singing

was

NP

the boy

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 11

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Tree Insertion Grammar: Restrictions on adjunction

• TIG allows multiple simultaneous adjunction on a single node
• Simultaneous adjunction 6= wrapping adjunction; strings are
adjoined independently

A

A* w4w1 w5w3

A =

w5

A

w4

w3

w1

andA

A*w2 A

w2

A

A
w2

w3

w5

w4

w1

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 12

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Tree Insertion Grammar: Restrictions on adjunction

• At the following nodes, adjunction is not allowed: substitution
nodes, foot nodes, roots of auxiliary trees.

• A left (resp. right) auxiliary tree is not allowed to be adjoined to
the nodes on the spine of a right (resp. left) auxiliary tree

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 13

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Tree Insertion Grammar: Restrictions on adjunction

Example: S

a

S

cE

S∗

S

E

S∗

d

E

E∗e

• Language generated if grammar is taken to be a TAG (assuming
NA at foot nodes)?

L((de∗)∗ac∗|e+(de∗)∗ac∗c)

• Language generated if grammar is taken to be a TIG?

L((de∗)∗ac∗)

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 14

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

TIG: possible extensions

• Adding adjunction constraints
• Limit or forbid simultaneous adjunction (e.g. at most one left
and right auxiliary tree)

• Stochastic parameters to control the probabilities of substitution
and adjunction

• Additional requirement for a TIG to be lexicalized (LTIG)
? Left(right) anchored LTIG ⇒ if every elementary tree is left(right)

anchored

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 15

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Relations between CFG, TIG and TAG

• TIGs generate context-free languages
• Any CFG can be converted to TIG
• TIG without adjoining constraints can be easily converted to CFG
• TIG prohibits wrapping adjunction

? trivially a TAG without alterations
• TIG prohibits adjunction on the root nodes of auxiliary trees

? TAG allows such adjunction
• TIG allows multiple simultaneous adjunction

? Such adjunction is not allowed in TAG
• TIG without adjoining constraints can be converted to TAG
deriving the same trees
? If TIG uses adjoining constraints, such a conversion can be difficult

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 16

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Conversion of TIG to CFG (1) [SW95]

• TIG G = 〈N,T ,S, I,A〉 and CFG G ′ = 〈N ′,T ′,S ′,P〉

• Step 1: For each nonterminal Ai in N, add two nonterminals Yi and Zi .
This yields a new set N ′.

• Step 2: For each nonterminal Ai in N, include the following rules in P:
Yi → ε, Zi → ε.

• Step 3: Alter every node µ in every elementary tree in I and A as
follows:
– let Ai be the label of µ.
– If left adjunction is possible at µ, add a new leftmost child of µ

labeled Yi and mark it for substitution.
– If right adjunction is possible at µ, add a new rightmost child of µ

labeled Zi and mark it for substitution.

• T’ = T, S’ = S

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 17

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Conversion of TIG to CFG (2)

• Step 4: Convert every auxiliary tree t in A as follows:
– let Ai be the label of the root µ of t.
– If t is a left auxiliary tree, add a new root labeled Yi with two

children: µ on the left, and on the right, a node labeled Yi and
marked for substitution.

– If t is a right auxiliary tree, add a new root labeled Zi with two
children: µ on the left, and on the right, a node labeled Zi and
marked for substitution.

– Relabel the foot of t with ε, turning t into an initial tree.

• Step 5: Every elementary tree t is now initial tree.
– Each t is converted into a rule in P as follows:
– The label of the root of t becomes the left hand side of a rule.
– The labels on the frontier of t with any instances of ε omitted

become the right hand side of the rule.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 18

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Conversion of TIG to CFG (3)

NP

Martin

S

NP↓ VP

runs

VP

VP* AdP

slowly

N = { NP, S, VP, AdP }
N’ = { NP, NP1, NP2, S, S1, S2,
VP, VP1, VP2, AdP, AdP1, AdP2 }

NP

NP1↓ Martin NP2↓

S

S1↓ NP↓ VP

VP1↓ runs VP2↓

S2↓

VP

VP* AdP

Adp1↓ slowly

VP2

VP

ε AdP

Adp1↓ slowly

VP2↓
P = { NP1 → ε, NP2 → ε, S1 → ε, S2 → ε, VP1 → ε,
VP2 → ε, AdP1 → ε, AdP2 → ε,
NP → NP1 Martin NP2, S → S1 NP VP1 runs VP2 S2,
VP2 → Adp1 slowly VP2}

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 19

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Conversion of CFG to LTIG

• Step 1: Create the set of initial trees
• Step 2: Let the label of the root be Ai Modify the grammar of
Step 1, so that every tree t is either:
– left-anchored (i.e. has a terminal as its first nonempty node)
– has a first nonempty frontier node labeled Aj where i ≤ j

To this end, we do the following:
– if i > j , substitute initial trees such that the first nonempty

frontier node is labeled Ai
– if i = j , convert the tree to an auxiliary tree

• Step 3: Modify the set of initial trees until every tree is left
anchored, via substitution of lexicalized trees.

• Step 4: Every unanchored auxiliary tree gets a lexical anchor (via
substitution of the initial trees from the previous step)

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 20

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Conversion of CFG to LTIG (example)
CFG A1 → A2A2

A2 → A1A2|A2A1|a

Step 1
A1

A2↓ A2↓

A2

A1↓ A2↓

A2

A2↓ A1↓

A2

a

Step 2
A1

A2↓ A2↓

A2

A1

A2* A2↓

A2↓
A2

A2* A1↓

A2

a

Step 3

A1

A2

a

A2↓

A2

A1

A2* A2↓

A2↓
A2

A2* A1↓

A2

a

Step 4

A1

A2

a

A2↓

A2

A1

A2* A2

a

A2↓

A2

A2* A1

A2

a

A2↓

A2

a

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 21

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Earley parsing for TIGs
• We use dotted productions v → v1 . . . vi • vi+1 . . . vk as for TAG
parsing.

• Let Adjoin be a boolean predicate; Adjoin(vr , v) indicates
whether the auxiliary tree with root node vr can be adjoined at
node v .

• Let LeftAux be a boolean predicate; LeftAux(vr) indicates
whether the tree with root vr is a left auxiliary tree.
RightAux is defined accordingly for right auxiliary trees.

• Foot, Subst, Init are boolean predicates indicating whether a
node is a foot node, a substitution node or the root of an initial
tree respectively.

• Parse items have the form [v → v1 . . . vi • vi+1 . . . vk , i , j] where:
v → v1 . . . vi • vi+1 . . . vk is a dotted production, and
0 ≤ i ≤ j ≤ n indicate the already recognized span.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 22

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Earley parsing for TIGs
The Earley parser traverses the trees as follows:

S

A B

a
S*A

D b

In contrast to TAG:
• no need for a top/bottom distinction; multiple adjunction is
allowed

• only two indices needed, spans cannot be discontinuous
Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 23

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Earley parsing for TIGs

Initialization:
[v → •α, 0, 0] Init(v) 1

PredictLeftAdjunction: [v → •α, i , j]
[vr → •γ, j, j]

LeftAux(vr),
Adjoin(vr , v)

LeftAdjunction: [v → •α, i , j][vr → γ•, j, k]
[v → •α, i , k]

LeftAux(vr),
Adjoin(vr , v)

PredictRightAdjunction: [v → α•, i , j]
[vr → •γ, j, j]

RightAux(vr),
Adjoin(vr , v)

RightAdjunction: [v → α•, i , j][vr → γ•, j, k]
[v → α•, i , k]

RightAux(vr),
Adjoin(vr , v)

1We don’t assume that the derived tree must have a root label S.
Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 24

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Earley parsing for TIGs

Scan: [v → α • v ′β, i , j]
[v → αv ′ • β, i , j + 1] l(v ′) = wj+1

EpsScan: [v → α • v ′β, i , j]
[v → αv ′ • β, i , j] l(v ′) = ε

ScanFoot: [v → α • v ′β, i , j]
[v → αv ′ • β, i , j] Foot(v ′)

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 25

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Earley parsing for TIGs

PredictSubst: [v → α • v ′β, i , j]
[vr → •γ, j, j]

Subst(v ′), Init(vr),
l(v ′) = l(vr)

Substitute: [v → α • v ′β, i , j][vr → γ•, j, k]
[v → αv ′ • β, i , k]

Subst(v ′), Init(vr),
l(v ′) = l(vr)

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 26

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Earley parsing for TIGs

MoveDown: [v → α • v ′β, i , j]
[v ′ → •γ, j, j] v ′ → γ is a rule, i.e., a subtree

CompleteNode: [v → α • v ′β, i , j][v ′ → γ•, j, k]
[v → αv ′ • β, i , k]

Goal Items: [v → α•, 0, n], Init(v)

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 27

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Data driven parsing for TAG: overall architecture
Data-driven TAG/TIG parsing works as follows [BBN+09, BWKJ19]:

• Training data: sentences with supertag information and
derivation tree edges.

supertags: NP

N�

S

VP

NP↓V�

NP↓

NP

NP∗Det�

NP

N�

derivation
tree: subst

subst

adj

tokens: Adam ate the apple

• Formally, the derivation tree is a dependency tree.
⇒ Data-driven TAG/TIG parsing consists of

1 supertagging (a sequence labeling task);
2 dependency parsing;
3 computation of derived tree.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 28

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Reminder: PCFG

• Grammar induction (with some preprocessing) from a treebank
• For all A→ α ∈ P, the estimated probability p(A→ α) is

P(A→ α|A) = count(A→ α)

count(A)
• where count(A→ α) is the number of occurences of the production in the

treebank and count(A) the number of A-nodes in the treebank
• ⇒ Maximum Likelihood Estimator

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 29

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Reminder: PCFG

S → NP VP 1.0
VP → V 0.1
VP → V NP 0.7
VP → V NP NP 0.2
NP → Det N 0.6

NP → N 0.4
Det → the 0.5
Det → a 0.5
N → cat 0.2
N → dog 0.2

N → man 0.3
N → woman 0.3
V → chased 0.8
V → kissed 0.2

A = ’the cat chased a dog’

P(A) = P(S) × P(S → NP VP|S) × P(NP → Det N |NP) ×
P(VP → V NP|VP) × P(NP → Det N |NP) × P(Det → the|Det) ×
P(N → cat|N) × P(V → chased|V) × P(Det → a|Det) ×
P(N → dog|N)
= 1.0 × 1.0 × 0.6 × 0.7 × 0.6 × 0.5 × 0.2 × 0.8 × 0.5 × 0.2 =
0.002016

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 30

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Evaluation

• In order to judge the performance of a parser, one must be able
to assess the quality of its output (the parsed test data) with
respect to the desired output (the gold data).

• For constituency trees, we usually compare for each parsed
sentence the set of bracketings produced by the parser with the
set of gold bracketings.

• A bracketing is a pair of indices on the input string denoting the
start and the end of the span dominated by a certain
non-terminal. The bracketing is called labeled if the label is
included (e.g., [NP, 3, 5]), otherwise (e.g., [3, 5]) it is called
unlabeled.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 31

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Evaluation

Commonly, bracket scoring is defined as follows. Let O be the set of
bracketings from the parser output, and G the gold bracketings.

Evaluation metrics are precision P (“how many of the bracketings we
found are correct?”) recall R (“how many of the gold bracketings did
we find?”) and F-score F1:

P =
|O ∩ G |
|O| R =

|O ∩ G |
|G | F1 =

2 · P · R
P + R

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 32

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Evaluation

Example:

Candidate parse:

W

Z

dc

Y

b

X

a

Gold tree:

W

Y

V

dc

Z

b

X

a

Cand. bracketings: [W, 0, 4], [X, 0, 1], [Y, 1, 2], [Z, 2, 4]
Gold bracketings: [W, 0, 4], [X, 0, 1], [Y, 1, 4], [Z, 1, 2], [V, 2, 4]

unlabelled P = 4/4 = 1 labelled P = 2/4 = 0.5
unlabelled R = 4/5 = 0.8 labelled R = 2/5 = 0.4
unlabelled F1 = 0.89 labelled F1 = 0.44

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 33

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Evaluation

For TAG parsing (provided we have gold data), in addition, we can
measure

• supertagging accuracy:

number of correct cand. supertags
number of gold supertags

• dependency parsing (= derivation tree) accuracy:

number of correct cand. derivation edges
number of gold derivation edges

The latter can be measured labelled and unlabelled.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 34

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

MICA parser
• MICA (Marseille-INRIA-Columbia-AT&T) [BBN+09]
http://mica.lif.univ-mrs.fr/

• Probabilistic dependency parser based on TIG
• Off-the-shelf parser: freely available, easy to install under Linux
• Earley-like parser (several optimizations are applied)
• Returns deep dependency parses

giving

John
arc=0

is
arc=adj

books
arc=1

to
arc=co-head

Mary
arc=2

• MICA is based on LTIG extracted from the Penn Treebank
? ⇒ rich linguistic information is available (e.g voice, empty

subjects, wh-movement, relative clauses etc.)
• state-of-the art performance (87,6% unlabeled dep. tree
accuracy)

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 35

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

MICA parser

• Two processes:
• supertagging (assignment of a sequence of elementary trees to the

input word sequence), 4727 supertags from Penn Treebank
• actual parser (derives syntactic structure from the n-best chosen

supertags)
• MICA returns n-best parses for arbitrary n: parse trees are
associated with probabilities

• MICA grammars are extracted in three steps:
? TIG extracted from Penn Treebank, along with a table of counts
? TIG and the table of counts are used to build a PCFG
? PCFG is “specialized” in order to model more finely some

lexico-syntactic phenomena

[BBN+09]

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 36

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Off-spine TAG (osTAG)

• Off-spine TAG (osTAG) is a context-free TAG variant [SYCS13]

• Linguistically motivated

• Generates context-free languages (as TIG)

• Normal TAG, but restricted with regard to adjunction:
? Adjunction is disallowed at any node on the spine of an auxiliary

tree below the root
? Although relaxing this constraint is still possible (at the expense of

complexity)

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 37

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Off-spine TAG (osTAG)

? In osTAG, adjunction is disallowed at the highlighted node:

VP

always VPNA

VP*NA quickly

+

S

NP↓ VP

runs

=

S

NP↓ VP

always VPNA

VPNA

runs

quickly

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 38

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

osTAG to CFG
• For the pair of nodes η and η’, the target nonterminal is noted as η(η’)
• For each initial tree τ and each interior node η in τ with children η1,. . . ,ηk ,

add the following rule to the CFG:
(1) η → η1. . . ηk

• If the interior node η is on the spine of an auxiliary tree τ (i.e. dominating
the foot of τ) and η’ is a node in a any tree where τ is adjoinable, and ηs is a
child on the spine of the tree, add the following rule to the CFG:
(2) η(η’) → η1. . . ηs(η’). . . ηk

• To initiate adjunction at any node η’ where a tree τ with root η is adjoinable,
the following rule is used:
(3) η’ → η(η’)

• For the foot node ηf of τ :
(4) ηf (η) → η

• To handle substitution, any frontier node η which allows substitution of a
tree rooted with η’
(5) η(η) → η’

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 39

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

osTAG to CFG
osTAG CFG simplified

CFG

α:

S

T

x

T

y

αε
1−→ α1α2 α1

3−→ βε(α1)
α1

1−→ x α1
3−→ γε(α1)

α2
1−→ y α2

3−→ βε(α2)
α2

3−→ γε(α2)

αε
1−→ α1α2

α1
1−→ x

α2
1−→ y

β:
T

a T* a

βε(α1)
2−→ aβ2(α1)a

βε(α2)
2−→ aβ2(α2)a

β2(α1)
4−→ α1

β2(α2)
4−→ α2

α1
2−→ aα1a

α2
2−→ aα2a

γ:
T

b T* b

γε(α1)
2−→ bγ2(α1)b

γε(α2)
2−→ bγ2(α2)b

γ2(α1)
4−→ α1

γ2(α2)
4−→ α2

α1
2−→ bα1b

α2
2−→ bα2b

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 40

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Possible extensions of osTAG

• Instead of allowing zero adjunction on the spine of auxiliary trees,
any non-zero bound would limit generative capacity
? Tradeoff: higher complexity (O(nk+2) for every k level of spine

adjunction)
• Make osTAG consistent with TIG constraints (no increasing in
complexity)

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 41

Introduction Tree Insertion Grammar (TIG) Earley parsing for TIGs Off-spine TAG (osTAG)

Experiments with osTAG: evaluation
[SYCS13]

• Coarse-to-fine: first use a PCFG for parsing, then feed all parses
above some threshold probability into the osTAG chart. The
three parsing models below take less (osTAG1) or more context
(osTAG3) into account in the probabilistic model of adjunction
at a node.

• TSG is a baseline Tree Substitution Grammar model (no
adjunction, only substitution).

• Parsing F-Score for different models (full test set and sentences
of length 40 or less)

All 40 # adj. (all) # Wrap. adj. (all)
TSG 85.00 86.08 - -
osTAG1 85.42 86.43 1336 52
osTAG2 85.54 86.56 1952 44
osTAG3 85.86 86.84 3585 41

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 42

References I

[BBN+09] Srinivas Bangalore, Pierre Boullier, Alexis Nasr, Owen Rambow, and Benoît Sagot.
MICA: A probabilistic dependency parser based on Tree Insertion Grammars (Application Note).
In Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American
Chapter of the Association for Computational Linguistics, Companion Volume: Short Papers, pages
185–188, Boulder, Colorado, June 2009. Association for Computational Linguistics.

[BWKJ19] Tatiana Bladier, Jakub Waszczuk, Laura Kallmeyer, and Jörg Janke.
From partial neural graph-based LTAG parsing towards full parsing.
Computational Linguistics in the Netherlands Journal, 9:3–26, Dec. 2019.

[Gre65] Sheila A Greibach.
A new normal-form theorem for context-free phrase structure grammars.
Journal of the ACM (JACM), 12(1):42–52, 1965.

[SW95] Yves Schabes and Richard C Waters.
Tree insertion grammar: a cubic-time, parsable formalism that lexicalizes context-free grammar without
changing the trees produced.
Computational Linguistics, 21(4), 1995.

[SYCS13] Ben Swanson, Elif Yamangil, Eugene Charniak, and Stuart Shieber.
A context free tag variant.
In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), volume 1, pages 302–310, 2013.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: Data-driven TAG parsing 43

	Introduction
	

	Tree Insertion Grammar (TIG)
	

	Earley parsing for TIGs
	

	Off-spine TAG (osTAG)
	

	Appendix

