
Parsing Beyond CFG
Homework 6: Tree Insertion Grammar (TIG)

Laura Kallmeyer

Question 1 Consider the following set of initial trees and auxilary trees:
α: NP

N

apple

β1: NP

NPCC

and

NP

NP∗

β2: NP

NP∗Det

the
Consinder a string “the apple and the apple”. What are the derived trees that one obtains

for that string

1. if the grammar is considered a TAG?

2. if the grammar is considered a TIG?

Solution:

1. NP

NP

NP

NP

N

apple

Det

the

CC

and

NP

NP

N

apple

Det

the

NP

NP

NP

N

apple

Det

the

CC

and

NP

NP

NP

N

apple

Det

the

NP

NP

NP

N

apple

Det

the

CC

and

NP

NP

NP

N

apple

Det

the

2. NP

NP

NP

NP

N

apple

Det

the

CC

and

NP

NP

N

apple

Det

the

NP

NP

NP

N

apple

Det

the

CC

and

NP

NP

NP

N

apple

Det

the

Question 2 Consider the following set of initial trees and auxilary trees:
α: S

e

β1: S

T

S∗b

a

β2: T

dcT∗

What is the string language of this grammar

1. if the grammar is considered a TAG?

2. if the grammar is considered a TIG?

Solution:

1. {(ab)ne(cd)m | either n = m = 0 or n ≥ 1}



2. {(ab)ne |n ≥ 0}

Question 3 Consider the grammar we extracted in the last homework for the following bina-
rized NP subtree:

NP

NP

NP

NP

NN

work

NN

defense

NN

criminal

JJ

white-collar

The supertags are as follows:
α: NP

NN�

β1: NP

NP∗NN�

β12: NP

NP∗JJ�

1. In the preceding homework, this was supposed to be a TAG. But it can also be considered
a TIG. Why is that possible?

2. Now consider the input “criminal defense”, assuming that “criminal” can be both JJ and
NN, while “defense” has always POS tag NN. If the POS tag is the only indication for
choosing elementary trees anchored by our input token, which are then the lexicalized
elementary trees that we obtain for this input?

3. Now use the following three lexicalized trees and perform an Earley parsing of “criminal
defense”, based on these elementary trees.

τ1 NP

NN

defense

τ2 NP

NP∗NN

criminal

τ3 NP

NP∗JJ

criminal

Notate nodes as 〈τ, p〉 where τ is the name of the tree, p the position of the node in ques-
tion. List all items and, furthermore, for items that can be obtained by several different
rule applications, list all the antecedent item sets (this is agenda-based chart parsing, no
item gets created more than once).

id item operation, antecedent items
1 [〈τ1, ε〉 → •〈τ1, 1〉, 0, 0] initialization
2 [〈τ2, ε〉 → •〈τ2, 1〉 〈τ2, 2〉, 0, 0] PredictLeftAdjunction, 1
3 [〈τ3, ε〉 → •〈τ3, 1〉 〈τ3, 2〉, 0, 0] PredictLeftAdjunction, 1
4 [〈τ1, 1〉 → •〈τ1, 11〉, 0, 0] MoveDown, 1

. . .

Solution:

1. The auxiliary trees are both left auxiliary trees, therefore the grammar satisfies the con-
straints on TIG.

2. NP

NN

defense

NP

NN

criminal

NP

NP∗NN

criminal

NP

NP∗NN

defense

NP

NP∗JJ

criminal



3. τ1 NP

NN

defense

τ2 NP

NP∗NN

criminal

τ3 NP

NP∗JJ

criminal

id item operation, antecedent items
1 [〈τ1, ε〉 → •〈τ1, 1〉, 0, 0] initialization
2 [〈τ2, ε〉 → •〈τ2, 1〉 〈τ2, 2〉, 0, 0] PredictLeftAdjunction, 1
3 [〈τ3, ε〉 → •〈τ3, 1〉 〈τ3, 2〉, 0, 0] PredictLeftAdjunction, 1
4 [〈τ1, 1〉 → •〈τ1, 11〉, 0, 0] MoveDown, 1
5 [〈τ2, 1〉 → •〈τ2, 11〉, 0, 0] MoveDown, 2
6 [〈τ3, 1〉 → •〈τ3, 11〉, 0, 0] MoveDown, 3
7 [〈τ2, 1〉 → 〈τ2, 11〉•, 0, 1] LexScan, 5
8 [〈τ3, 1〉 → 〈τ3, 11〉•, 0, 1] LexScan, 6
9 [〈τ2, ε〉 → 〈τ2, 1〉 • 〈τ2, 2〉, 0, 1] CompleteNode, 2, 7
10 [〈τ3, ε〉 → 〈τ3, 1〉 • 〈τ3, 2〉, 0, 1] CompleteNode, 3, 8
11 [〈τ2, ε〉 → 〈τ2, 1〉〈τ2, 2〉•, 0, 1] ScanFoot, 9
12 [〈τ3, ε〉 → 〈τ3, 1〉〈τ3, 2〉•, 0, 1] ScanFoot, 10
13 [〈τ1, ε〉 → •〈τ1, 1〉, 0, 1] Adjoin, either 1, 11 or 1, 12
14 [〈τ2, ε〉 → •〈τ2, 1〉 〈τ2, 2〉, 1, 1] PredictLeftAdjunction, 14
15 [〈τ3, ε〉 → •〈τ3, 1〉 〈τ3, 2〉, 1, 1] PredictLeftAdjunction, 14
16 [〈τ1, 1〉 → •〈τ1, 11〉, 1, 1] MoveDown, 13
17 [〈τ2, 1〉 → •〈τ2, 11〉, 1, 1] MoveDown, 14
18 [〈τ3, 1〉 → •〈τ3, 11〉, 1, 1] MoveDown, 15
19 [〈τ1, 1〉 → 〈τ1, 11〉•, 1, 2] LexScan, 16
20 [〈τ1, ε〉 → 〈τ1, 1〉•, 0, 2] CompleteNode, 13, 15, goal item!


