Parsing Beyond CFG Homework 3: TAG (Formal properties)

Laura Kallmeyer

Question 1 Give a TAG (with adjunction constraints) for the following language:

 $\{a^n b^n a^m b^k \mid n \ge 0, n \ge m \ge k\}$

Solution

Question 2 Show that $L_5 = \{a^n b^n c^n d^n e^n \mid n \ge 0\}$ is not a Tree Adjoining language.

Solution: Assume that L_5 is a TAL and satisfies the weak pumping lemma with some constant c. Take $w = a^{c+1}b^{c+1}c^{c+1}d^{c+1}e^{c+1}$. According to the pumping lemma one can find w_1, \ldots, w_4 , at least one of them not empty, such that they can be inserted repeatedly at four positions into w yielding a new word in L_5 . At least one of the w_1, \ldots, w_4 must contain two different terminal symbols since they altogether must contain equal numbers of as, bs, cs, ds and es. Then, when doing a second insertion of the w_1, \ldots, w_4 , the as, bs, cs, ds and es get mixed and the resulting word is not in L_5 . Contradiction, therefore our initial assumption does not hold, L_5 is not a TAL.

Question 3 Show that the following languages are not Tree Adjoining languages:

- 1. $L_6 = \{a^n b^n c^n d^n e^n f^n \mid n \ge 0\}$ Hint: You can make use of the fact the language L_5 above is not a TAL.
- 2. $L_{wwww} = \{wwww \mid w \in \{a, b\}^*\}$

Solution:

- 1. We assume that L_6 is a TAL. Then its image under the homomorphism g with $g(a) = a, g(b) = b, g(c) = c, g(d) = d, g(e) = e, g(f) = \varepsilon$ is also a TAL. This image is L_5 , a language for which we already know that it is not a TAL. Contradiction, therefore our initial assumption does not hold, L_6 is not a TAL.
- 2. We assume that L_{wwww} is a TAL. Then

$$L = L_{wwww} \cap L(a^+b^+a^+b^+a^+b^+a^+b^+) = \{a^n b^m a^n b^m a^n b^m a^n b^m \mid n, m \ge 1\}$$

is also a TAL.

Consequently, L satisfies the weak pumping lemma with some constant c. Take $w = a^{c+1}b^{c+1}a^{c+1}b^{c+1}a^{c+1}b^{c+1}a^{c+1}b^{c+1}a^{c+1}b^{c+1}$. According to the pumping lemma one can find w_1, \ldots, w_4 , at least one of them not empty, such that they can be inserted repeatedly at four positions into w yielding a new word in L. Furthermore, between w_1 and w_2 and also between w_3 and w_4 there must not be more than c terminals. Consequently, we cannot choose to add equal numbers of as in the four a^{c+1} parts in each iteration or equal numbers of bs in the four b^{c+1} parts. But any other choice for w_1, w_2, w_3, w_4 and the positions in w where they are added leads to a word outside L when iterating. Contradiction.