Parsing Beyond CFG Homework 4: TAG parsing

Laura Kallmeyer

Question 1 Consider a TAG with only the following two trees:
α : S
β :

1. Give the CYK trace (only successful items) for the input $w=c c a$, using the algorithm with dotted productions.
Write nodes as pairs $\langle\gamma, p\rangle$ where $\gamma \in\{\alpha, \beta\}$ and p is the address of a node in γ.
The trace should list the items together with information about the rule that has been applied and the antecedent items:

id	item	operation, antecedents
1	$[\langle\alpha, \varepsilon\rangle \rightarrow\langle\alpha, 1\rangle, 2,-,-, 2]$	axiom
2	$[\langle\beta, \varepsilon\rangle \rightarrow \bullet\langle\beta, 1\rangle\langle\beta, 2\rangle\langle\beta, 3\rangle, 0,-,-, 0]$	axiom
3	$[\langle\alpha, \varepsilon\rangle \rightarrow\langle\alpha, 1\rangle \bullet, 2,-,-, 3]$	lex-scan 1

2. For the binary CYK, we first have to binarize the elementary trees. Assuming that we do a left to right binarization, this leads to
α : S
β :

Where X is a new non-terminal. De-binarization then only consists of removing all nodes with label X.

Give the CYK trace (only successful items) for the input $w=$ cca, using the binary CYK algorithm.

The trace should list the items together with information about the rule that has been applied and the antecedent items:

id	item	operation, antecedents
1	$\left[\left\langle\beta, 11_{\mathrm{T}}, 0,-,-, 1\right]\right.$	lex-scan
2	$\left[\left\langle\beta, 12_{\top}, 1,-,-, 2\right]\right.$	lex-scan

Solution

id	item	operation, antecedents
1	$[\langle\alpha, \varepsilon\rangle \rightarrow \bullet\langle\alpha, 1\rangle, 2,-,-, 2]$	axiom
2	$[\langle\beta, \varepsilon\rangle \rightarrow \bullet\langle\beta, 1\rangle\langle\beta, 2\rangle\langle\beta, 3\rangle, 0,-,-, 0]$	axiom
3	$[\langle\alpha, \varepsilon\rangle \rightarrow\langle\alpha, 1\rangle \bullet, 2,-,-, 3]$	lex-scan 1
4	$[\langle\beta, \varepsilon\rangle \rightarrow\langle\beta, 1\rangle \bullet\langle\beta, 2\rangle\langle\beta, 3\rangle, 0,-,-, 1]$	lex-scan 2
5	$\left[\langle\alpha, \varepsilon\rangle_{\perp}, 2,-,-, 3\right]$	convert 3
6	$[\langle\beta, \varepsilon\rangle \rightarrow\langle\beta, 1\rangle\langle\beta, 2\rangle \bullet\langle\beta, 3\rangle, 0,-,-, 2]$	lex-scan 4
7	$[\langle\beta, \varepsilon\rangle \rightarrow\langle\beta, 1\rangle\langle\beta, 2\rangle\langle\beta, 3\rangle \bullet, 0,2,3,3]$	foot adjunction 6, 5
8	$\left[\langle\beta, \varepsilon\rangle_{\perp}, 0,2,3,3\right]$	convert 7
9	$\left[\langle\beta, \varepsilon\rangle_{\top}, 0,2,3,3\right]$	null adjoin 8
10	$\left[\langle\alpha, \varepsilon\rangle_{\top}, 0,-,-, 3\right]$	root adjunction 9, 5

	id	item	operation, antecedents
1	$\left[\left\langle\beta, 11_{\top}, 0,-,-, 1\right]\right.$	lex-scan	
2	$\left[\left\langle\beta, 12_{\top}, 1,-,-, 2\right]\right.$	lex-scan	
3	$\left[\left\langle\alpha, 1_{\top}, 2,--,-3\right]\right.$	lex-scan	
4	$\left[\left\langle\beta, 2_{\top}, 2,2,3,3\right]\right.$	foot-predict	
2.	5	$\left[\left\langle\beta, 1_{\perp}, 0,-,-, 2\right]\right.$	move-binary 1,2
6	$\left[\left\langle\alpha, \varepsilon_{\perp}, 2,-,-, 3\right]\right.$	move-unary	
7	$\left[\left\langle\beta, 1_{\top}, 0,-,-, 2\right]\right.$	null-adjoin 5	
8	$\left[\left\langle\beta, \varepsilon_{\perp}, 0,2,3,3\right]\right.$	move-binary 7,4	
9	$\left[\left\langle\beta, \varepsilon_{\top}, 0,2,3,3\right]\right.$	null-adjoin 9	
10	$\left[\left\langle\alpha, \varepsilon_{\top}, 0,-,-, 3\right]\right.$	adjoin 6,9	

Question 2 We could also modify the dotted production parser towards a left-corner parser. Idea: Instead of blindly predicting every item $[v \rightarrow \bullet \gamma, i,-,-, i]$, we predict a production only when the left corner has been found.

The items would have the same format as in the dotted production CYK, the goal items would also be the same, and all rules except lex-scan, eps-scan and axioms would stay the same.

New rules:
Lex-scan: $\frac{\left.\text { Eps-scan: } \quad \frac{}{\left[v_{\top}, i,-,-, i+1\right]} l(v)=w_{i+1} \quad l(v)=\varepsilon .,-,-, i\right]}{\left[v_{\top}, i,\right.}$
Old rules that do not change:
Convert: $\frac{\left[v \rightarrow \gamma \bullet, i, f_{1}, f_{2}, j\right]}{\left[v_{\perp}, i, f_{1}, f_{2}, j\right]}$
Null-adjoin: $\frac{\left[v_{\perp}, i, f_{1}, f_{2}, j\right]}{\left[v_{\top}, i, f_{1}, f_{2}, j\right]} f_{O A}(v)=0$
Move right: $\frac{\left[v \rightarrow \gamma_{1} \bullet w \gamma_{2}, i, f_{1}, f_{2}, j\right],\left[w_{\top}, j, f_{3}, f_{4}, k\right]}{\left[v \rightarrow \gamma_{1} w \bullet \gamma_{2}, i, f_{1} \oplus f_{3}, f_{2} \oplus f_{4}, k\right]}$
Substitute: $\frac{\left[v \rightarrow \gamma_{1} \bullet w \gamma_{2}, i, f_{1}, f_{2}, j\right],[u, \top, j,-,-, k]}{\left[v \rightarrow \gamma_{1} w \bullet \gamma_{2}, i, f_{1}, f_{2}, k\right]} \quad \begin{aligned} & l(w)=l(u), \\ & \text { root }(u), \\ & w \text { substitution node }\end{aligned}$
Foot adjunction: $\frac{\left[v \rightarrow \gamma_{1} \bullet w \gamma_{2}, i,-,-, j\right],\left[u_{\perp}, j, f_{1}, f_{2}, k\right]}{\left[v \rightarrow \gamma_{1} w \bullet \gamma_{2}, i, j, k, k\right]}$
$l(w)=l(u)$, foot (w), adj. of auxiliary tree with w allowed at u

Root adjunction: $\frac{\left[v_{\top}, i, j, k, l\right],\left[u, \perp, j, f_{1}, f_{2}, k\right]}{\left[u_{\top}, i, f_{1}, f_{2}, l\right]}$
$l(v)=l(u), \operatorname{root}(v)$, adj. of auxiliary tree with v allowed at u

In addition, we need a new rule Left-corner-predict that starts a rule once its left corner (i.e., its first lefthand side element) has been found. It replaces the former blind predictions done in axioms. How should this rule look like?

Solution:
Left-corner-predict: $\frac{\left[u_{\mathrm{T}}, i, f_{1}, f_{2}, j\right]}{\left[v \rightarrow u \bullet \gamma, i, f_{1}, f_{2}, j\right]} v \rightarrow u \gamma$ is a rule

