
Parsing Beyond CFG
Homework 4: TAG parsing

Laura Kallmeyer

Question 1 Consider a TAG with only the following two trees:
α: S

a

β: S

S∗NAcc

1. Give the CYK trace (only successful items) for the input w = cca, using the algorithm
with dotted productions.

Write nodes as pairs 〈γ, p〉 where γ ∈ {α, β} and p is the address of a node in γ.

The trace should list the items together with information about the rule that has been
applied and the antecedent items:
id item operation, antecedents
1 [〈α, ε〉 → •〈α, 1〉, 2,−,−, 2] axiom
2 [〈β, ε〉 → •〈β, 1〉〈β, 2〉〈β, 3〉, 0,−,−, 0] axiom
3 [〈α, ε〉 → 〈α, 1〉•, 2,−,−, 3] lex-scan 1

...

2. For the binary CYK, we first have to binarize the elementary trees. Assuming that we do
a left to right binarization, this leads to

α: S

a

β: S

S∗NAX

cc
Where X is a new non-terminal. De-binarization then only consists of removing all nodes
with label X.

Give the CYK trace (only successful items) for the input w = cca, using the binary CYK
algorithm.

The trace should list the items together with information about the rule that has been
applied and the antecedent items:
id item operation, antecedents
1 [〈β, 11>, 0,−,−, 1] lex-scan
2 [〈β, 12>, 1,−,−, 2] lex-scan

...

Solution

1.

id item operation, antecedents
1 [〈α, ε〉 → •〈α, 1〉, 2,−,−, 2] axiom
2 [〈β, ε〉 → •〈β, 1〉〈β, 2〉〈β, 3〉, 0,−,−, 0] axiom
3 [〈α, ε〉 → 〈α, 1〉•, 2,−,−, 3] lex-scan 1
4 [〈β, ε〉 → 〈β, 1〉 • 〈β, 2〉〈β, 3〉, 0,−,−, 1] lex-scan 2
5 [〈α, ε〉⊥, 2,−,−, 3] convert 3
6 [〈β, ε〉 → 〈β, 1〉〈β, 2〉 • 〈β, 3〉, 0,−,−, 2] lex-scan 4
7 [〈β, ε〉 → 〈β, 1〉〈β, 2〉〈β, 3〉•, 0, 2, 3, 3] foot adjunction 6, 5
8 [〈β, ε〉⊥, 0, 2, 3, 3] convert 7
9 [〈β, ε〉>, 0, 2, 3, 3] null adjoin 8
10 [〈α, ε〉>, 0,−,−, 3] root adjunction 9, 5



2.

id item operation, antecedents
1 [〈β, 11>, 0,−,−, 1] lex-scan
2 [〈β, 12>, 1,−,−, 2] lex-scan
3 [〈α, 1>, 2,−,−, 3] lex-scan
4 [〈β, 2>, 2, 2, 3, 3] foot-predict
5 [〈β, 1⊥, 0,−,−, 2] move-binary 1, 2
6 [〈α, ε⊥, 2,−,−, 3] move-unary
7 [〈β, 1>, 0,−,−, 2] null-adjoin 5
8 [〈β, ε⊥, 0, 2, 3, 3] move-binary 7,4
9 [〈β, ε>, 0, 2, 3, 3] null-adjoin 9
10 [〈α, ε>, 0,−,−, 3] adjoin 6,9

Question 2 We could also modify the dotted production parser towards a left-corner parser.
Idea: Instead of blindly predicting every item [v → •γ, i,−,−, i], we predict a production only
when the left corner has been found.

The items would have the same format as in the dotted production CYK, the goal items
would also be the same, and all rules except lex-scan, eps-scan and axioms would stay the
same.

New rules:
Lex-scan:

[v>, i,−,−, i+ 1]
l(v) = wi+1 Eps-scan:

[v>, i,−,−, i]
l(v) = ε

Old rules that do not change:

Convert:
[v → γ•, i, f1, f2, j]

[v⊥, i, f1, f2, j]

Null-adjoin:
[v⊥, i, f1, f2, j]
[v>, i, f1, f2, j]

fOA(v) = 0

Move right:
[v → γ1 • wγ2, i, f1, f2, j], [w>, j, f3, f4, k]

[v → γ1w • γ2, i, f1 ⊕ f3, f2 ⊕ f4, k]

Substitute:
[v → γ1 • wγ2, i, f1, f2, j], [u,>, j,−,−, k]

[v → γ1w • γ2, i, f1, f2, k]
l(w) = l(u),
root(u),
w substitution node

Foot adjunction:
[v → γ1 • wγ2, i,−,−, j], [u⊥, j, f1, f2, k]

[v → γ1w • γ2, i, j, k, k]
l(w) = l(u), foot(w),
adj. of auxiliary tree
with w allowed at u

Root adjunction:
[v>, i, j, k, l], [u,⊥, j, f1, f2, k]

[u>, i, f1, f2, l]

l(v) = l(u), root(v),
adj. of auxiliary tree
with v allowed at u

In addition, we need a new rule Left-corner-predict that starts a rule once its left corner
(i.e., its first lefthand side element) has been found. It replaces the former blind predictions
done in axioms. How should this rule look like?

Solution:
Left-corner-predict: [u>, i, f1, f2, j]

[v → u • γ, i, f1, f2, j]
v → uγ is a rule


