Parsing Beyond CFG CYK Recognition for TAG: Example

Laura Kallmeyer

Winter 2021/22

The grammar:

Input:
(1) John seems to sleep

In the following, "to sleep" is treated like a single token.
Parsing trace (only successful items) for the binary CYK:

	Item	Rule
1.	$\left[\alpha_{n}, 1_{\top}, 0,-,-, 1\right]$	lex-scan (John)
2.	$\left[\beta_{\text {fin }}, 11_{\top}, 1,-,-, 2\right]$	lex-scan (seems)
3.	$\left[\alpha_{s}, 211_{\top}, 2,-,-, 3\right]$	lex-scan (to_sleep)
4.	$\left[\beta_{\text {fin }}, 2_{\top}, 2,2,3,3\right]$	foot-predict
5.	$\left[\alpha_{n}, \epsilon_{\perp}, 0,-,-, 1\right]$	move-unary from 1.
6.	$\left[\beta_{\text {fin }}, 1_{\perp}, 1,-,-, 2\right]$	move-unary from 2.
7.	$\left[\alpha_{s}, 21_{\perp}, 2,-,-, 3\right]$	move-unary from 3.
8.	$\left[\alpha_{n}, \epsilon_{\top}, 0,-,-, 1\right]$	null-adjoin from 5.
9.	$\left[\beta_{\text {fin }}, 1_{\top}, 1,-,-, 2\right]$	null-adjoin from 6.
10.	$\left[\alpha_{s}, 21_{\top}, 2,-,-, 3\right]$	null-adjoin from 7.
11.	$\left[\alpha_{s}, 2_{\perp}, 2,-,-, 3\right]$	move-unary from 10.
12.	$\left[\beta_{\text {fin }}, \epsilon_{\perp}, 1,2,3,3\right]$	move-binary from 4. and 9.
13.	$\left[\alpha_{s}, 1_{\top}, 0,-,-, 1\right]$	substitute 8.
14.	$\left[\beta_{\text {fin }}, \epsilon_{\top}, 1,2,3,3\right]$	null-adjoin from 12.
15.	$\left[\alpha_{s}, 2_{\top}, 1,-,-, 3\right]$	adjoin 14. into 11.
16.	$\left[\alpha_{s}, \epsilon_{\perp}, 0,-,-, 3\right]$	move-binary from 13. and 15.
17.	$\left[\alpha_{s}, \epsilon_{\top}, 0,-,-, 3\right]$	null-adjoin from 16.

Second algorithm.
Same grammar:

Input:
(2) John seems to sleep

Parsing trace (only successful items) for the CYK with dotted productions. We write $\langle\gamma, p\rangle$ for the node in γ at address p.

	Item	Rule
1.	$\left[\left\langle\alpha_{n}, \varepsilon\right\rangle \rightarrow \bullet\left\langle\alpha_{n}, 1\right\rangle, 0,-,-, 0\right]$	axiom
2.	$\left[\left\langle\alpha_{s}, \varepsilon\right\rangle \rightarrow \bullet\left\langle\alpha_{s}, 1\right\rangle\left\langle\alpha_{s}, 2\right\rangle, 0,-,-, 0\right]$	axiom
3.	$\left[\left\langle\alpha_{s}, 2\right\rangle \rightarrow \bullet\left\langle\alpha_{s}, 21\right\rangle, 2,-,-, 2\right]$	axiom
4.	$\left[\left\langle\alpha_{s}, 21\right\rangle \rightarrow \bullet\left\langle\alpha_{s}, 211\right\rangle, 2,-,-, 2\right]$	axiom
5.	$\left[\left\langle\beta_{\text {fin }}, \varepsilon\right\rangle \rightarrow \bullet\left\langle\beta_{\text {fin }}, 1\right\rangle\left\langle\beta_{\text {fin }}, 2\right\rangle, 1,-,-, 1\right]$	axiom
6.	$\left[\left\langle\beta_{\text {fin }}, 1\right\rangle \rightarrow \bullet\left\langle\beta_{\text {fin }}, 11\right\rangle, 1,-,-, 1\right]$	axiom
7.	$\left[\left\langle\alpha_{n}, \varepsilon\right\rangle \rightarrow\left\langle\alpha_{n}, 1\right\rangle \bullet, 0,-,-, 1\right]$	lex-scan from 1.
8.	$\left[\left\langle\alpha_{s}, 21\right\rangle \rightarrow\left\langle\alpha_{s}, 211\right\rangle \bullet, 2,-,-, 3\right]$	lex-scan from 4.
9.	$\left[\left\langle\beta_{\text {fin }}, 1\right\rangle \rightarrow\left\langle\beta_{\text {fin }}, 11\right\rangle \bullet, 1,-,-, 2\right]$	lex-scan from 6.
10.	$\left[\left\langle\alpha_{n}, \varepsilon\right\rangle_{\perp}, 0,-,-, 1\right]$	convert 7.
11.	$\left[\left\langle\alpha_{s}, 21\right\rangle_{\perp}, 2,-,-, 3\right]$	convert 8.
12.	$\left[\left\langle\beta_{\text {fin }}, 1\right\rangle_{\perp}, 1,-,-, 2\right]$	convert 9 .
13.	$\left[\left\langle\alpha_{n}, \varepsilon\right\rangle_{\top}, 0,-,-, 1\right]$	null-adjoin 10.
14.	$\left[\left\langle\alpha_{s}, 21\right\rangle_{\mathrm{\top}}, 2,-,-, 3\right]$	null adjoin 11.
15.	$\left[\left\langle\beta_{\text {fin }}, 1\right\rangle_{\top}, 1,-,-, 2\right]$	null-adjoin 12.
16.	$\left[\left\langle\alpha_{s}, \varepsilon\right\rangle \rightarrow\left\langle\alpha_{s}, 1\right\rangle \bullet\left\langle\alpha_{s}, 2\right\rangle, 0,-,-, 1\right]$	substitute 2., 13.
17.	$\left[\left\langle\alpha_{s}, 2\right\rangle \rightarrow\left\langle\alpha_{s}, 21\right\rangle \bullet, 2,-,-, 3\right]$	move right 3., 14.
18.	$\left[\left\langle\beta_{\text {fin }}, \varepsilon\right\rangle \rightarrow\left\langle\beta_{\text {fin }}, 1\right\rangle \bullet\left\langle\beta_{\text {fin }}, 2\right\rangle, 1,-,-, 2\right]$	move right 5., 15
19.	$\left[\left\langle\alpha_{s}, 2\right\rangle_{\perp}, 2,-,-, 3\right]$	convert 17.
20.	$\left[\left\langle\beta_{f i n}, \varepsilon\right\rangle \rightarrow\left\langle\beta_{\text {fin }}, 1\right\rangle\left\langle\beta_{\text {fin }}, 2\right\rangle \bullet, 1,2,3,3\right]$	foot adjoin 19., 18.
21.	$\left[\left\langle\beta_{\text {fin }}, \varepsilon\right\rangle_{\perp}, 1,2,3,3\right]$	convert 20.
22.	$\left[\left\langle\beta_{\text {fin }}, \varepsilon\right\rangle_{\top}, 1,2,3,3\right]$	null adjoin 21.
23.	$\left[\left\langle\alpha_{s}, 2\right\rangle_{\top}, 1,-,-, 3\right]$	root adjoin 11., 22.
24.	$\left[\left\langle\alpha_{s}, \varepsilon\right\rangle \rightarrow\left\langle\alpha_{s}, 1\right\rangle\left\langle\alpha_{s}, 2\right\rangle \bullet, 0,-,-, 3\right]$	move right 16., 23.
25.	$\left[\left\langle\alpha_{s}, \varepsilon\right\rangle_{\perp}, 0,-,-, 3\right]$	convert 24.
26.	$\left[\left\langle\alpha_{s}, \varepsilon\right\rangle_{\top}, 0,-,-, 3\right]$	null adjoin 25.

