
Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

english

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 1

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

Parsing Beyond Context-Free Grammars:
Tree Adjoining Grammar Parsing

Laura Kallmeyer
Heinrich-Heine-Universität Düsseldorf

Winter 2021/22

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 1

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

Overview
english
1 Parsing as deduction

Parsing schemata
Chart parsing

2 CYK parsing for TAG
Items
Inference rules
Complexity
CYK with dotted productions

3 Earley Parsing for TAG
Introduction
Items
Inference rules

[Kal10]

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 2

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

Parsing as deduction: Parsing Schemata (1)

[PW83, SSP95, Sik97]

Parsing schemata understand parsing as a deductive process.

Deduction of new items from existing ones can be described using
inference rules.

General form:
antecedent
consequent side conditions

antecedent, consequent: lists of items

Application: if antecedent can be deduced and side condition holds,
then the consequent can be deduced as well.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 3

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

Parsing as deduction: Parsing Schemata (2)

A parsing schema consists of

• deduction rules;
• an axiom (or axioms), can be written as a deduction rule with
empty antecedent;

• and a goal item.

The parsing algorithm succeeds if, for a given input, it is possible to
deduce the goal item.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 4

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

Parsing as deduction: Parsing Schemata (3)

Example: CYK-Parsing for CFG in Chomsky Normal Form.

Goal item: [S, 1, n]

Deduction rules:

Scan:
[A, i , 1] A→ wi ∈ P

Complete: [B, i , l1], [C , i + l1, l2]
[A, i , l1 + l2]

A→ B C ∈ P

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 5

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

Parsing as deduction: Chart parsing (1)
Chart parsing:

We have two structures,

• the chart C
• and an agenda A.

Both are initialized as empty.

• We start by computing all items that are axioms, i.e., that can be
obtained by applying rules with empty antecedents.

• Starting from these items, we extend the set C as far as possible
by subsequent applications of the deduction rules.

• The agenda contains items that are waiting to be used in further
deduction rules. It avoids multiple applications of the same
instance of a deduction rule.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 6

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

Parsing as deduction: Chart parsing (2)

C = A = ∅
for all items I resulting from a rule application with empty
antecedent set:

add I to C and to A
while A 6= ∅:

remove an item I from A
for all items I ′ resulting from a rule application
with antecedents I and items from C:

if I ′ /∈ C:
add I ′ to C and to A

if there is a goal item in C: output true
else: output false

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 7

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

CYK for binarized TAG: Items (1)

CYK-Parsing for TAG:

• First presented in [VSJ85], formulation with deduction rules in
[KS09, Kal10].

• Assumption: elementary trees are such that each node has at
most two daughters. (Any TAG can be transformed into an
equivalent TAG satisfying this condition.)

• The algorithm simulates a bottom-up traversal of the derived
tree.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 8

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

CYK for binarized TAG: Items (2)

• At each moment, we are in a specific node in an elementary tree
and we know about the yield of the part below. Either there is a
foot node below, then the yield is separated into two parts. Or
there is no foot node below and the yield is a single substring of
the input.

• We need to keep track of whether we have already adjoined at
the node or not since at most one adjunction per node can occur.
For this, we distinguish between a bottom and a top position on
a node. Bottom signifies that we have not performed an
adjunction.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 9

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

CYK for TAG: Items (3)

Item form: [γ, pt , i , f1, f2, j] where

• γ ∈ I ∪ A,
• p is the Gorn address of a node in γ (ε for the root, pi for the ith
daughter of the node at address p),

• subscript t ∈ {>,⊥} specifies whether substitution or adjunction
has already taken place (>) or not (⊥) at p, and

• 0 ≤ i ≤ f1 ≤ f2 ≤ j ≤ n are indices with i , j indicating the left
and right boundaries of the yield of the subtree at position p and
f1, f2 indicating the yield of a gap in case a foot node is
dominated by p. We write f1 = f2 = − if no gap is involved.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 10

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

CYK for TAG: Inference rules (1)

Goal items: [α, ε>, 0,−,−, n] where α ∈ I

We need two rules to process leaf nodes while scanning their labels,
depending on whether they have terminal labels or labels ε:

Lex-scan:
[γ, p>, i ,−,−, i + 1] l(γ, p) = wi+1

Eps-scan:
[γ, p>, i ,−,−, i]

l(γ, p) = ε

(Notation: l(γ, p) is the label of the node at address p in γ.)

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 11

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

CYK for TAG: Inference rules (2)

•
wi+1

i i + 1

Lex-scan

•
ε

i i

Eps-scan

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 12

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

CYK for TAG: Inference rules (3)

The rule foot-predict processes the foot node of auxiliary trees β ∈ A
by guessing the yield below the foot node:

Foot-predict:
[β, p>, i , i , j , j]

β ∈ A, p foot node address in β, i ≤ j

•
A∗
i j

A

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 13

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

CYK for TAG: Inference rules (4)

When moving up inside a single elementary tree, we either move from
only one daughter to its mother, if this is the only daughter, or we
move from the set of both daughters to the mother node:

Move-unary:
[γ, (p · 1)>, i , f1, f2, j]

[γ, p⊥, i , f1, f2, j]
node address p · 2 does not exist in γ

Move-binary: [γ, (p · 1)>, i , f1, f2, k], [γ, (p · 2)>, k, f ′
1 , f ′

2 , j]
[γ, p⊥, i , f1 ⊕ f ′

1 , f2 ⊕ f ′
2 , j]

(f ′ ⊕ f ′′ = f where f = f ′ if f ′′ = −, f = f ′′ if f ′ = −, and f is undefined
otherwise)

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 14

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

CYK for TAG: Inference rules (5)

Move-unary:

•
B

i j

γ A

B

i j

; γ A
•

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 15

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

CYK for TAG: Inference rules (6)

Move-binary:

•
B

•
C

i k

γ A

•
B

•
C

k j

γ A

B C

i j

; γ A
•

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 16

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

CYK for TAG: Inference rules (7)

For nodes that do not require adjunction, we can move from the
bottom position of the node to its top position.

Null-adjoin: [γ, p⊥, i , f1, f2, j]
[γ, p>, i , f1, f2, j]

fOA(γ, p) = 0

i j

γ A
•

i j

; γ •
A

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 17

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

CYK for TAG: Inference rules (8)

The rule substitute performes a substitution:

Substitute: [α, ε>, i ,−,−, j]
[γ, p>, i ,−,−, j]

l(α, ε) = l(γ, p),
node(γ, p) is a substitution node

i j

α

•
A

i j

γ

•
A

;

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 18

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

CYK for TAG: Inference rules (9)

The rule adjoin adjoins an auxiliary tree β at p in γ, under the
precondition that the adjunction of β at p in γ is allowed:

Adjoin: [β, ε>, i , f1, f2, j], [γ, p⊥, f1, f ′
1 , f ′

2 , f2]
[γ, p>, i , f ′

1 , f ′
2 , j]

β ∈ fSA(γ, p)

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 19

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

CYK for TAG: Inference rules (10)

Adjoin:

β

•
A∗

i jf1 f2

•
A

f1 f2

γ A
•

i j

γ •
A;

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 20

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

CYK for TAG: Complexity

Complexity of the algorithm: What is the upper bound for the number
of applications of the adjoin operation?

• We have |A| possibilities for β, |A ∪ I| for γ, m for p where m is
the maximal number of internal nodes in an elementary tree.

• The six indices i , f1, f ′
1 , f ′

2 , f2, j range from 0 to n.

Consequently, adjoin can be applied at most |A||A ∪ I|m(n + 1)6
times and therefore, the time complexity of this algorithm is O(n6).

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 21

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

CYK for TAG with dotted productions (1)

Alternative inspired by [Was17, WSP17, BWKJ19] that avoids the
requirement of binary trees:

• We have passive and active items:
• passive items talk about a node v in an elementary tree and the

span below;
• active items talk about a position between the daughters v1 . . . vn

of a node v , notated v → v1 . . . vi • vi+1 . . . vn, and the span of
the part to the left of that position, i.e., below v1 . . . vi

• Deduction rules move through the daughters from left to right.
• Items have the form [v → v1 . . . vk • vk+1 . . . vn, i , f1, f2, j] or
[vt , i , f1, f2, j] with indices as above, v a node and t either ⊥ or
>.1

Every such v → v1 . . . vn is called a rule.
1Nodes v can, as before, be encoded as pairs 〈γ, p〉.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 22

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

CYK for TAG with dotted productions (2)

Goal items: all [v>, 0,−,−, n] with root(v) and l(v) = S.

Axioms:
[v → •γ, i ,−,−, i] v → γ is a rule

Lex-scan: [v → γ1 • wγ2, i , f1, f2, j]
[v → γ1w • γ2, i , f1, f2, j + 1] l(w) = wj+1

Eps-scan: [v → γ1 • wγ2, i , f1, f2, j]
[v → γ1w • γ2, i , f1, f2, j]

l(w) = ε

Convert: [v → γ•, i , f1, f2, j]
[v⊥, i , f1, f2, j]

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 23

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

CYK for TAG with dotted productions (3)
Null-adjoin: [v⊥, i , f1, f2, j]

[v>, i , f1, f2, j]
fOA(v) = 0

Move right: [v → γ1 • wγ2, i , f1, f2, j], [w>, j , f3, f4, k]
[v → γ1w • γ2, i , f1 ⊕ f3, f2 ⊕ f4, k]

Substitute:
[v → γ1 • wγ2, i , f1, f2, j], [u,>, j ,−,−, k]

[v → γ1w • γ2, i , f1, f2, k]
l(w) = l(u),
root(u),
w substitution node

Foot adjunction:
[v → γ1 • wγ2, i ,−,−, j], [u⊥, j , f1, f2, k]

[v → γ1w • γ2, i , j , k, k]
l(w) = l(u), foot(w),
adj. of auxiliary tree
with w allowed at u

Root adjunction:
[v>, i , j , k, l], [u,⊥, j , f1, f2, k]

[u>, i , f1, f2, l]
l(v) = l(u), root(v),
adj. of auxiliary tree
with v allowed at u

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 24

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

CYK for TAG with dotted productions (4)

Differences between the two CYK algorithms:

• The binary CYK requires a binarization, which has to be undone
after parsing.

• The dotted production CYK has more complex items.

• The binary CYK blindly predicts the span below foot nodes (see
foot-predict, which does not have any antecedents) while the
dotted production CYK starts processing a foot node only if the
part below a possible adjunction site has been found.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 25

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

CYK for TAG with dotted productions (5)

• The dotted production CYK blindly predicts all rules in the
grammar, starting at any position in the input (see axioms). In
contrast, the binary CYK considers a node only if its daughters
have been found.

• The binary CYK blindly scans terminals and ε as soon as the
input matches, no matter whether anything else from the tree
has been found. In contrast, the dotted production CYK scans
only if all left sisters of the leaf have been found.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 26

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

Early Parsing for CFG

• bottom-up parser with top-down control, i.e., a bottom-up
parsing that does only reductions that can be top-down predicted
from S, or a

• top-down parser with bottom-up recognition

• at each time of parsing, one production A→ X1 . . .Xk is
considered such that

• some part X1 . . .Xi has already been bottom-up recognized
(completed)

• while some part Xi+1 . . .Xk has been top-down predicted.

This situation can be characterized by a dotted production
(sometimes called Earley item) A→ X1 . . .Xi • Xi+1 . . .Xk .
Dotted productions are called active items. Productions of the form
A→ α• are called completed items.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 27

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

Early parsing: idea

The Earley parser simulates a top-down left-to-right depth-first
traversal of the parse tree while moving the dot such that for each
node

• first, the dot is to its left (the node is predicted),
• then the dot traverses the tree below,
• then the dot is to its right (the subtree below the node is
completed)

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 28

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

Algorithm (1)

The items describing partial results of the parser contain a dotted
production and the start and end index of the completed part of the
rhs:

Item form: [A→ α • β, i , j] with A→ αβ ∈ P, 0 ≤ i ≤ j ≤ n.

Parsing starts with predicting all S-productions:

Axioms:
[S → •α, 0, 0] S → α ∈ P

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 29

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

Algorithm (2)

If the dot of an item is followed by a non-terminal symbol B, a new
B-production can be predicted. The completed part of the new item
(still empty) starts at the index where the completed part of the first
item ends.

Predict: [A→ α • Bβ, i , j]
[B → •γ, j , j] B → γ ∈ P

If the dot of an item is followed by a terminal symbol a that is the
next input symbol, then the dot can be moved over this terminal (the
terminal is scanned). The end position of the completed part is
incremented.

Scan: [A→ α • aβ, i , j]
[A→ αa • β, i , j + 1] wj+1 = a

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 30

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

Algorithm (3)

If the dot of an item is followed by a non-terminal symbol B and if
there is a second item with a dotted B-production and a fully
completed rhs and if, furthermore, the completed part of the second
item starts at the position where the completed part of the first ends,
then the dot in the first can be moved over the B while changing the
end index to the end index of the completed B-production.

Complete: [A→ α • Bβ, i , j], [B → γ•, j , k]
[A→ αB • β, i , k]

The parser is successfull if a completed S-production spanning the
entire input can be deduced:

Goal items: [S → α•, 0, n] for some S → α ∈ P.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 31

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

Earley for TAG: Introduction (1)

• Left-to-right CYK parser very slow: O(n6) worst case and best
case (just as in CFG version of CYK, too many partial trees not
pertinent to the final tree are produced).

• Behaviour is due to pure bottom-up approach, no predictive
information whatsoever is used.

• Goal: Earley-style parser! First in [SJ88]. Here, we present the
algorithm from [JS97].

We assume a TAG without substitution nodes.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 32

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

Earley for TAG: Introduction (2)

• Earley Parsing: Left-to-right scanning of the string (using
predictions to restrict hypothesis space)

• Traversal of elementary trees, current position marked with a dot.
The dot can have four different positions per node: left above
(la), left below (lb), right above (ra), right below (rb).

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 33

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

Earley for TAG: Introduction (3)

General idea: Whenever we are

• left above a node, we can predict an adjunction and start the
traversal of the adjoined tree;

• left of a foot node, we can move back to the adjunction site and
traverse the tree below it;

• right of an adjunction site, we continue the traversal of the
adjoined tree at the right of its foot node;

• right above the root of an auxiliary tree, we can move back to
the right of the adjunction site.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 34

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

Earley for TAG: Items (1)

What kind of information do we need in an item characterizing a
partial parsing result?

[α, dot, pos, i , j , k, l , sat?]

where
• α ∈ I ∪ A is a (dotted) tree, dot and pos the address and
location of the dot

• i , j , k, l are indices on the input string, where i , l ∈ {0, . . . , n},
j , k ∈ {0, . . . , n} ∪ {−}, n = |w |, − means unbound value

• sat? is a flag. It controls (prevents) multiple adjunctions at a
single node (sat? = 1 means that something has already been
adjoined to the dotted node)

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 35

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

Earley for TAG: Items (2)

What do the items mean?

• [α, dot, la, i , j , k, l , 0]: In α part left of the dot ranges from i to l .
If α is an auxiliary tree, part below foot node ranges from j to k.

• [α, dot, lb, i ,−,−, i , 0]: In α part below dotted node starts at
position i .

• [α, dot, rb, i , j , k, l , sat?]: In α part below dotted node ranges
from i to l . If α is an auxiliary tree, part below foot node ranges
from j to k. If sat? = 0, nothing was adjoined to dotted node,
sat? = 1 means that adjunction took place.

• [α, dot, ra, i , j , k, l , 0]: In α part left and below dotted node
ranges from i to l . If α is an auxiliary tree, part below foot node
ranges from j to k.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 36

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

Earley for TAG: Items (3)

Some notational conventions:

• We use Gorn addresses for the nodes: 0 is the address of the
root, i (1 ≤ i) is the address of the ith daughter of the root, and
for p 6= 0, p · i is the address of the ith daughter of the node at
address p.

• For a tree α and a Gorn address dot, α(dot) denotes the node at
address dot in α (if defined).

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 37

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

Earley for TAG: Inference Rules (1)

ScanTerm [γ, dot, la, i , j , k, l , 0]
[γ, dot, ra, i , j , k, l + 1, 0] l(γ, dot) = wl+1

• w l+1
w i+1 . . . wl

Scan-ε [γ, dot, la, i , j , k, l , 0]
[γ, dot, ra, i , j , k, l , 0] l(γ, dot) = ε

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 38

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

Earley for TAG: Inference Rules (2)

PredictAdjoinable [γ, dot, la, i , j , k, l , 0]
[β, ε, la, l ,−,−, l , 0] β ∈ fSA(γ, dot)

w i+1. . . wl

•A

A∗

⇒

•A

PredictNoAdj [γ, dot, la, i , j , k, l , 0]
[γ, dot, lb, l ,−,−, l , 0] fOA(γ, dot) = 0

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 39

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

Earley for TAG: Inference Rules (3)

PredictAdjoined

[β, dot, lb, l ,−,−, l , 0]
[γ, dot ′, lb, l ,−,−, l , 0] dot = foot(β), β ∈ fSA(γ, dot ′)

•A∗

A

•A
⇒

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 40

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

Earley for TAG: Inference Rules (4)

CompleteFoot

[γ, dot, rb, i , j , k, l , 0], [β, dot ′, lb, i ,−,−, i , 0]
[β, dot ′, rb, i , i , l , l , 0]

dot′=foot(β),
β∈fSA(γ,dot′)

w i+1. . . wl

A•

•A∗

A

A∗•

⇒

A

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 41

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

Earley for TAG: Inference Rules (5)

CompleteNode

[γ, dot, la, f , g , h, i , 0], [γ, dot, rb, i , j , k, l , sat?]
[γ, dot, ra, f , g ⊕ j , h ⊕ k, l , 0] l(β, dot) ∈ N

w i+1. . . wl

A•

w f +1 . . . wi

•A

w f +1 . . . wl

⇒ A•

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 42

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

Earley for TAG: Inference Rules (6)

Adjoin

[β, ε, ra, i , j , k, l , 0], [γ, dot, rb, j , p, q, k, 0]
[γ, dot, rb, i , p, q, l , 1] β ∈ fSA(γ, p)

wi+1 . . . wj wk+1 . . . wl

A∗

A•

wj+1. . . wk

A•

wi+1. . . wl

⇒ Aadj
•

sat? = 1 prevents the new item from being reused in another Adjoin
application.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 43

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

Earley for TAG: Inference Rules (7)

Move the dot to daughter/sister/mother:

MoveDown: [γ, dot, lb, i , j , k, l , 0]
[γ, dot · 1, la, i , j , k, l , 0] γ(dot · 1) is defined

MoveRight: [γ, dot, ra, i , j , k, l , 0]
[γ, dot + 1, la, i , j , k, l , 0] γ(dot + 1) is defined

MoveUp: [γ, dot ·m, ra, i , j , k, l , 0]
[γ, dot, rb, i , j , k, l , 0] γ(dot ·m + 1) is not defined

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 44

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

Earley for TAG: Inference Rules (8)

Rules for substitution:

PredictSubst: [γ, p, lb, i ,−,−, i , 0]
[α, ε, la, i ,−,−, i , 0]

γ(p) a substitution node,
α ∈ I, l(γ, p) = l(α, ε)

Substitute: [α, ε, ra, i ,−,−, j , 0]
[γ, p, rb, i ,−,−, j , 0]

γ(p) a substitution node,
α ∈ I, l(γ, p) = l(α, ε)

Note that substitute does not check whether a corresponding γ-item
which had triggered the prediction of α exists. This check is done in
the next step, when applying completeNode in order to combine the
part to the left of the substitution node with the part below it.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 45

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

Earley for TAG: Inference Rules (9)

Initialize:
[α, ε, la, 0,−,−, 0, 0] α ∈ I, l(α, ε) = S

Goal item: [α, ε, ra, 0,−,−, n, 0], α ∈ I

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 46

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

Earley for TAG: The Valid Prefix Property (VPP) (1)

• The Earley algorithm, as presented, does not have the VPP.
• In other words, there are items which are not part of a derivation
from an initial α with the span of the derived tree up to the
dotted node being a prefix of a word in the language.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 47

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

Earley for TAG: The Valid Prefix Property (VPP) (2)

Example:

α

S

d S

b

β

S

S* c

Every word in the language starts with d .

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 48

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

Earley for TAG: The Valid Prefix Property (VPP) (3)

Input bccc leads (among others) to the following items:

Item Rule
1. [α, ε, la, 0,−,−, 0, 0] initialize
2. [β, ε, la, 0,−,−, 0, 0] predictAdjoinable from 1.

. . .
3. [β, 1, lb, 0,−,−, 0, 0]
4. [α, 2, lb, 0,−,−, 0, 0] predictAdjoined from 3.

. . .
5. [α, 2, rb, 0,−,−, 1, 0]
6. [β, 1, rb, 0, 0, 1, 1, 0] completeFoot form 3. and 5.

. . .
7. [β, ε, ra, 0, 0, 3, 4, 0] (after repeated adjunctions of β)
8. [α, 2, rb, 0,−,−, 4, 1] adjoin from 7. and 4.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 49

Parsing as deduction CYK parsing for TAG Earley Parsing for TAG

Earley for TAG: The Valid Prefix Property (VPP) (4)

• Reason for lack of VPP: neither predictAdjoined nor
completeFoot nor adjoin check for the existence of an item that
has triggered the prediction of this adjunction.

• Maintaining the VPP leads to deduction rules with more indices.
It was therefore considered to be costly: O(n9) [SJ88].

• But: in some rules, some of the indices are not relevant for the
rule and can be factored out (treated as “don’t care”-values).
Therefore, a O(n6) VPP Earley algorithm is actually possible
[Ned97].

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 50

References I

[BWKJ19] Tatiana Bladier, Jakub Waszczuk, Laura Kallmeyer, and Jörg Janke.
From partial neural graph-based LTAG parsing towards full parsing.
Computational Linguistics in the Netherlands Journal, 9:3–26, Dec. 2019.

[JS97] Aravind K. Joshi and Yves Schabes.
Tree-Adjoning Grammars.
In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages, pages 69–123. Springer, Berlin,
1997.

[Kal10] Laura Kallmeyer.
Parsing Beyond Context-Free Grammars.
Cognitive Technologies. Springer, Heidelberg, 2010.

[KS09] Laura Kallmeyer and Giorgio Satta.
A polynomial-time parsing algorithm for tt-mctag.
In Proceedings of ACL, Singapore, 2009.

[Ned97] Mark-Jan Nederhof.
Solving the correct-prefix property for TAGs.
In T. Becker and H.-U. Krieger, editors, Proceedings of the Fifth Meeting on Mathematics of Language,
pages 124–130, Schloss Dagstuhl, Saarbrücken, August 1997.

[PW83] Fernando C. N. Pereira and David Warren.
Parsing as deduction.
In 21st Annual Meeting of the Association for Computational Linguistics, pages 137––144, MIT, Cambridge,
Massachusetts, 1983.

[Sik97] Klaas Sikkel.
Parsing Schemata.
Texts in Theoretical Computer Science. Springer-Verlag, Berlin, Heidelberg, New York, 1997.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 51

References II

[SJ88] Yves Schabes and Aravind K. Joshi.
An Earley-type parsing algorithm for Tree Adjoining Grammars.
In Proceedings of the 26th Annual Meeting of the Association for Computational Linguistics, pages
258–269, 1988.

[SSP95] Stuart M. Shieber, Yves Schabes, and Fernando C. N. Pereira.
Principles and implementation of deductive parsing.
Journal of Logic Programming, 24(1 and 2):3–36, 1995.

[VSJ85] K. Vijay-Shanker and Aravind K. Joshi.
Some computational properties of Tree Adjoining Grammars.
In Proceedings of the 23rd Annual Meeting of the Association for Computational Linguistics, pages 82–93,
1985.

[Was17] Jakub Waszczuk.
Leveraging MWEs in practical TAG parsing: towards the best of the two world.
PhD thesis, 2017.

[WSP17] Jakub Waszczuk, Agata Savary, and Yannick Parmentier.
Multiword expression-aware A* TAG parsing revisited.
In Proceedings of the 13th International Workshop on Tree Adjoining Grammars and Related Formalisms,
pages 84–93, Umeå, Sweden, September 2017. Association for Computational Linguistics.

Kallmeyer | WS 2021/22 Parsing Beyond CFG: TAG Parsing 52

	Parsing as deduction
	Parsing schemata
	Chart parsing

	CYK parsing for TAG
	Items
	Inference rules
	Complexity
	CYK with dotted productions

	Earley Parsing for TAG
	Introduction
	Items
	Inference rules

	Appendix

