Parsing Beyond Context-Free Grammars: Introduction

Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf

Some of the slides created with Tatiana Bladier

Wintersemester 2021/22

CFG and natural languages

Topics of this course

- Natural languages are not context-free
- Tree Adjoining Grammars (TAGs): formal properties, chart parsing
- Data-driven TAG parsing + supertagging
- Linear Context-Free Rewriting Systems (LCFRS)
- LCFRS: formal properties, chart parsing
- Data-driven LCFRS parsing
- Grammar-less transition-based parsing with discontinuous constituents

① CFG and natural languages

2 Polynomial extensions of CFG

[Kal10]

CFG and natural languages (1)

A context-free grammar (CFG) is a set of rewriting rules that tell us how to replace a non-terminal by a sequence of non-terminal and terminal symbols.

Example:

 $\mathsf{S} \to \mathsf{a} \ \mathsf{S} \ \mathsf{b} \quad \mathsf{S} \to \mathsf{a} \mathsf{b}$

The string language generated by this grammar is $\{a^n b^n \mid n \ge 1\}$.

CFG and natural languages ○●○○○○○

CFG and natural languages (2)

Sample CFG G_{telescope}:

S	\rightarrow	NP VP	NP	\rightarrow	DΝ
VP	\rightarrow	VP PP V NP	Ν	\rightarrow	N PP
PP	\rightarrow	P NP			
Ν	\rightarrow	man girl telescope	D	\rightarrow	the
Ν	\rightarrow	John	Ρ	\rightarrow	with
V	\rightarrow	saw			

CFG and natural languages (3)

Context-free languages (CFLs)

- can be recognized in polynomial time $(\mathcal{O}(n^3))$;
- are accepted by push-down automata;
- have nice closure properties (e.g., closure under homomorphisms, intersection with regular languages ...);
- satisfy a pumping lemma;
- can describe nested dependencies $(\{ww^R \mid w \in T^*\})$.

[HU79]

CFG and natural languages (4)

Question: Is CFG powerful enough to describe all natural language phenomena?

Answer: No. There are constructions in natural languages that cannot be adequately described with a context-free grammar.

Example: cross-serial dependencies in Dutch and in Swiss German.

Dutch:

(1) ... dat Wim Jan Marie de kinderen zag helpen leren zwemmen
... that Wim Jan Marie the children saw help teach swim
' ... that Wim saw Jan help Marie teach the children to swim'

CFG and natural languages (5)

Swiss German:

- (2) ... das mer em Hans es huus hälfed aastriiche
 ... that we Hans_{Dat} house_{Acc} helped paint
 '... that we helped Hans paint the house'
- (3) ... das mer d'chind em Hans es huus lönd hälfe ... that we the children_{Acc} $\operatorname{Hans}_{Dat}$ house_{Acc} let help aastriiche

paint

"... that we let the children help Hans paint the house"

Swiss German uses case marking and displays cross-serial dependencies.

[Shi85] shows that Swiss German is not context-free.

CFG and natural languages (6)

If closure under homomorphisms and intersection with regular languages is given, the following holds:

A formalism that can generate cross-serial dependencies can also generate the copy language $\{ww \mid w \in \{a, b\}^*\}$.

The copy language is not context-free.

Therefore we are interested in extensions of CFG in order to describe all natural language phenomena.

CFG and natural languages (7)

Idea [Jos85]: characterize the amount of context-sensitivity necessary for natural languages.

Mildly context-sensitive formalisms have the following properties:

- 1 They generate (at least) all CFLs.
- 2 They can describe a limited amount of cross-serial dependencies. In other words, there is a n ≥ 2 up to which the formalism can generate all string languages {wⁿ | w ∈ T*}.
- **3** They are polynomially parsable.
- ④ Their string languages are of constant growth. In other words, the length of the words generated by the grammar grows in a linear way, e.g., $\{a^{2^n} | n \ge 0\}$ does not have that property.

Polynomial extensions of CFG (1)

Tree Adjoining Grammars (TAG), [JLT75, JS97]:

- Tree-rewriting grammar.
- Extension of CFG that allows to replace not only leaves but also internal nodes with new trees.
- Can generate the copy language.

Example: TAG for the copy language

CFG and natural languages

Polynomial extensions of CFG

Basic Definitions

Polynomial extensions of CFG (2)

Example: TAG derivation of *abab*:

Polynomial extensions of CFG (3)

Linear Context-free rewriting systems (LCFRS) and the equivalent Multiple Context-Free Grammars (MCFG), [VSWJ87, Wei88, SMFK91]

Idea: extension of CFG where non-terminals can span tuples of non-adjacent strings.

Example: yield(A) = $\langle a^n b^n, c^n d^n \rangle$, with $n \ge 1$.

The rewriting rules tell us how to compute the span of the lefthand side non-terminal from the spans of the righthand side non-terminals.

$$A(ab, cd) \rightarrow \varepsilon \quad A(aXb, cYd) \rightarrow A(X, Y) \quad S(XY) \rightarrow A(X, Y)$$

Generated string language: $\{a^n b^n c^n d^n \mid n \ge 1\}$.

LCFRS is more powerful than TAG but still mildly context-sensitive.

Polynomial extensions of CFG

Basic Definitions

Polynomial extensions of CFG (4)

Summary:

In this course, we are interested in mildly context-sensitive formalisms.

Basic Definitions: Languages (1)

Definition 1 (Alphabet, word, language)

- **1** An alphabet is a nonempty finite set X.
- 2 A string x₁...x_n with n ≥ 1 and x_i ∈ X for 1 ≤ i ≤ n is called a nonempty word on the alphabet X. X⁺ is defined as the set of all nonempty words on X.

A new element ε ∉ X⁺ is added: X^{*} := x⁺ ∪ {ε}.
For each w ∈ X^{*}, the concatenation of w and ε is defined as follows: wε = εw = w.

 ε is called the empty word, and each $w \in X^*$ is called a word on X.

A set L is called a language iff there is an alphabet X such that L ⊆ X*.

Basic Definitions: Languages (2)

Definition 2 (Homomorphism)

For two alphabets X and Y, a function $f : X^* \to Y^*$ is a homomorphism iff for all $v, w \in X^*$: f(vw) = f(v)f(w).

Definition 3 (Length of a word)

Let X be an alphabet, $w \in X^*$.

1 The length of w, |w| is defined as follows: if $w = \varepsilon$, then |w| = 0. If w = xw' for some $x \in X$, then |w| = 1 + |w'|.

Por every a ∈ X, we define |w|_a as the number of as occurring in w: If w = ε, then |w|_a = 0, if w = aw' then |w|_a = |w'|_a + 1 and if w = bw' for some b ∈ X \ {a}, then |w|_a = |w'|_a.

Basic Definitions: CFG (1)

Definition 4 (Context-free grammar)

- A context-free grammar (CFG) is a tuple $G = \langle N, T, P, S \rangle$ such that
 - **1** N and T are disjoint alphabets, the nonterminals and terminals of G.
 - 2 P ⊂ N × (N ∪ T)* is a finite set of productions (also called rewriting rules). A production ⟨A, α⟩ is usually written A → α.
 - **3** $S \in N$ is the start symbol.

Basic Definitions: CFG (2)

Definition 5 (Language of a CFG)

Let $G = \langle N, T, P, S \rangle$ be a CFG. The (string) language L(G) of G is the set $\{w \in T^* \mid S \stackrel{*}{\Rightarrow} w\}$ where

- for w, w' ∈ (N ∪ T)*: w ⇒ w' iff there is a A → α ∈ P and there are v, u ∈ (N ∪ T)* such that w = vAu and w' = vαu.
- $\stackrel{*}{\Rightarrow}$ is the reflexive transitive closure of \Rightarrow :

$$- w \stackrel{0}{\Rightarrow} w$$
 for all $w \in (N \cup T)^*$, and

- for all $w, w' \in (N \cup T)^*$: $w \stackrel{n}{\Rightarrow} w'$ iff there is a v such that $w \Rightarrow v$ and $v \stackrel{n-1}{\Rightarrow} w'$.
- for all $w, w' \in (N \cup T)^*$: $w \stackrel{*}{\Rightarrow} w'$ iff there is a *i* ∈ \mathbb{N} such that $w \stackrel{i}{\Rightarrow} w'$.

A language L is called context-free iff there is a CFG G such that L = L(G).

Basic Definitions: CFG (3)

Proposition 1 (Pumping lemma for context-free languages) Let *L* be a context-free language. Then there is a constant *c* such that for all $w \in L$ with $|w| \ge c$: $w = xv_1yv_2z$ with

- $|v_1v_2| \ge 1$,
- $|v_1yv_2| \leq c$, and
- for all $i \ge 0$: $xv_1^i yv_2^i z \in L$.

Basic Definitions: CFG (4)

Proposition 2

Context-free languages are closed under homomorphisms, i.e., for alphabets T_1 , T_2 and for every context-free language $L_1 \subset T_1^*$ and every homomorphism $h : T_1^* \to T_2^*$, $h(L_1) = \{h(w) \mid w \in L_1\}$ is a context-free language.

Proposition 3

Context-free languages are closed under intersection with regular languages, i.e., for every context-free language L and every regular language L_r , $L \cap L_r$ is a context-free language.

Basic Definitions: CFG (5)

Proposition 4

The copy language $L_{copy} = \{ww \mid w \in \{a, b\}^*\}$ is not context-free.

Proof: Assume that L_{copy} is context-free. Then $L' = L_{copy} \cap L(a^+b^+a^+b^+) = \{a^nb^ma^nb^m \mid n, m \ge 1\}$ is also context-free and therefore satisfies the pumping lemma with some constant *c*. In particular, the word $w = a^cb^ca^cb^c$ must contain v_1, v_2 as in the pumping lemma. However, with $|v_1yv_2| \le c$ and since at least one of the two strings v_1, v_2 must not be the empty string, the two strings v_1, v_2 cannot be part of only the two *a* groups or only the two *b* groups in the *w*. This leads necessary to words outside L' after the second iteration (i = 2). Contradiction to initial assumption.

Basic Definitions: Trees (1)

Definition 6 (Directed Graph)

- A directed graph is a pair (V, E) where V is a finite set of vertices and E ⊆ V × V is a set of edges.
- 2 For every $v \in V$, we define the in-degree of v as $|\{v' \in V \mid \langle v', v \rangle \in E\}|$ and the out-degree of v as $|\{v' \in V \mid \langle v, v' \rangle \in E\}|$.

 E^+ is the transitive closure of E and E^* is the reflexive transitive closure of E.

Basic Definitions: Trees (2)

Definition 7 (Tree)

A tree is a triple $\gamma = \langle V, E, r \rangle$ such that

- ⟨V, E⟩ is a directed graph and r ∈ V is a special node, the root node.
- γ contains no cycles, i.e., there is no $v \in V$ such that $\langle v, v \rangle \in E^+$,
- only the root $r \in V$ has in-degree 0,
- every vertex $v \in V$ is accessible from r, i.e., $\langle r, v \rangle \in E^*$, and
- all nodes $v \in V \{r\}$ have in-degree 1.

A vertex with out-degree 0 is called a leaf. The vertices in a tree are also called nodes.

Basic Definitions: Trees (3)

Definition 8 (Ordered Tree)

A tree is ordered if it has an additional linear precedence relation $\prec \in V \times V$ such that

- \prec is irreflexive, antisymmetric and transitive,
- for all v_1, v_2 with $\{\langle v_1, v_2 \rangle, \langle v_2, v_1 \rangle\} \cap E^* = \emptyset$: either $v_1 \prec v_2$ or $v_2 \prec v_1$ and if there is either a $\langle v_3, v_1 \rangle \in E$ with $v_3 \prec v_2$ or a $\langle v_4, v_2 \rangle \in E$ with $v_1 \prec v_4$, then $v_1 \prec v_2$, and
- nothing else is in \prec .

We use Gorn addresses for nodes in ordered trees: The root address is ε , and the *j*th child of a node with address *p* has address *pj*.

Basic Definitions: Trees (4)

Definition 9 (Labeling)

A labeling of a graph $\gamma = \langle V, E \rangle$ over a signature $\langle A_1, A_2 \rangle$ is a pair of functions $I : V \to A_1$ and $g : E \to A_2$ with A_1, A_2 possibly distinct.

Definition 10 (Syntactic tree)

Let *N* and *T* be disjoint alphabets of non-terminal and terminal symbols. A syntactic tree (over *N* and *T*) is an ordered finite labeled tree such that $l(v) \in N$ for each vertex *v* with out-degree at least 1 and $l(v) \in (N \cup T \cup \{\varepsilon\})$ for each leaf *v*.

Basic Definitions: Trees (5)

Definition 11 (Tree Language of a CFG)

Let $G = \langle N, T, P, S \rangle$ be a CFG.

1 A syntactic tree $\langle V, E, r \rangle$ over N and T is a parse tree in G iff

- $I(v) \in (T \cup \{\varepsilon\})$ for each leaf v,
- for every $v_0, v_1, \ldots, v_n \in V$, $n \ge 1$ such that $\langle v_0, v_i \rangle \in E$ for $1 \le i \le n$ and $\langle v_i, v_{i+1} \rangle \in \prec$ for $1 \le i < n$, $l(v_0) \rightarrow l(v_1) \ldots l(v_n) \in P$.
- **2** A parse tree $\langle V, E, r \rangle$ is a derivation tree in G iff I(r) = S.

3 The tree language of G is

$$L_T(G) = \{\gamma \mid \gamma \text{ is a derivation tree in } G\}$$

Basic Definitions: Trees (6)

Definition 12 (Weak and Strong Equivalence)

Let F_1 , F_2 be two grammar formalisms.

- *F*₁ and *F*₂ are weakly equivalent iff for each instance *G*₁ of *F*₁ there is an instance *G*₂ of *F*₂ that generates the same string language and vice versa.
- F_1 and F_2 are strongly equivalent iff for both formalisms the notion of a tree language is defined and, furthermore, for each instance G_1 of F_1 there is an instance G_2 of F_2 that generates the same tree language and vice versa.

References I

[HU79]	John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and Computation. Addison Wesley, 1979.
[JLT75]	Aravind K. Joshi, Leon S. Levy, and Masako Takahashi. Tree Adjunct Grammars. Journal of Computer and System Science, 10:136–163, 1975.
[Jos85]	Aravind K. Joshi. Tree adjoining grammars: How much contextsensitivity is required to provide reasonable structural descriptions? In D. Dowty, L. Karttunen, and A. Zwicky, editors, <i>Natural Language Parsing</i> , pages 206–250. Cambridge University Press, 1985.
[JS97]	Aravind K. Joshi and Yves Schabes. Tree-Adjoning Grammars. In G. Rozenberg and A. Salomaa, editors, <i>Handbook of Formal Languages</i> , pages 69–123. Springer, Berlin, 1997.
[Kal10]	Laura Kallmeyer. <i>Parsing Beyond Context-Free Grammars.</i> Cognitive Technologies. Springer, Heidelberg, 2010.
[SBMSN87]	Walter J. Savitch, Emmon Bach, William Marxh, and Gila Safran-Naveh, editors. <i>The Formal Complexity of Natural Language</i> . Studies in Linguistics and Philosophy. Reidel, Dordrecht, Holland, 1987.
[Shi85]	Stuart M. Shieber. Evidence against the context-freeness of natural language. <i>Linguistics and Philosophy</i> , 8:333–343, 1985. Reprinted in [SBMSN87].

References II

[SMFK91]	Hiroyuki Seki, Takahashi Matsumura, Mamoru Fujii, and Tadao Kasami. On multiple context-free grammars. <i>Theoretical Computer Science</i> , 88(2):191–229, 1991.
[VSWJ87]	K. Vijay-Shanker, David J. Weir, and Aravind K. Joshi. Characterizing structural descriptions produced by various grammatical formalisms. In <i>Proceedings of ACL</i> , Stanford, 1987.
[Wei88]	David J. Weir. Characterizing Mildly Context-Sensitive Grammar Formalisms. PhD thesis, University of Pennsylvania, 1988.