Parsing Beyond CFG
 Homework 2: TAG

Laura Kallmeyer

Question 1

Consider a TAG G with start symbol S and only the following two trees:
α :
${ }_{\varepsilon}^{S}$ β :

1. What is the string language generated by this TAG?
2. Now consider a TAG G^{\prime} that contains the same trees but without adjunction constraints. Does it generate the same string language as G? If not, give an example of a string that is only in one of the two languages.
3. What is the string language of G^{\prime} ?

Solution:

1. $L(G)=\left\{a^{n} b^{n} c^{n} d^{n} \mid n \geq 0\right\}$
2. By using β twice, adjoining each time to the root (i.e., β adjoins to the root of β, and this derived auxiliary tree adjoins at the root of α, we obtain a tree for the string $a b a b c d c d \notin L(G)$.
3. Clearly, if the leftmost terminal is a a (resp. a b), the rightmost is a d (resp. a c). The same holds for the next pair of terminals when moving towards the middle of a word, and so on. Furthermore, whenever adding a pair a and b to the first half of a word, the a precedes the b. Otherwise, the new pair can be added in any position. This means that, in the first half of the word, w_{1}, we have $\left|w_{1}\right|_{a}=\left|w_{1}\right|_{b}$ and for any two v_{1}, v_{2} with $w_{1}=v_{1} v_{2},\left|v_{1}\right|_{a} \geq\left|v_{2}\right|_{a}$ holds.
$L\left(G^{\prime}\right)=\left\{w_{1} w_{2}\left|w_{1} \in\{a, b\}^{*},\left|w_{1}\right|_{a}=\left|w_{1}\right|_{b}\right.\right.$, for any v_{1}, v_{2} with $w_{1}=v_{1} v_{2},\left|v_{1}\right|_{a} \geq\left|v_{2}\right|_{a}$ holds, and, furthermore, w_{2} is the image of w_{1}^{R} under a homomorphism f with $f(a)=$ $d, f(b)=c\}$

Question 2

Now consider the following elementary trees:
α :
β_{1} :

β_{2} :

Add adjunction constraints of the form $N A$ (stands for $f_{S A}(v)=\emptyset$), $O A(X)$ (stands for $f_{O A}(v)=1$ and $f_{S A}(v)=X$) or $S A(X)$ (stands for $f_{O A}(v)=0$ and $f_{S A}(v)=X$) to the trees so that the TAG generates $\left\{a^{n} b^{n} c^{n} d^{m} e^{m} f^{m} \mid n, m \geq 1\right\}$.

Solution
α :

β_{1} :

β_{2} :

Question 3

Consider the derivation for "Bill John claims Mary likes" on slide 25, ignoring the subscript i.

1. Give the resulting derived tree.
2. Give the resulting derivation tree. (As names for the trees, you can use their lexical anchors.)

Solution
1.

2.

