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Introduction (1)

Non-terminals that are used in CFGs are usually not enough to

express linguistic generalisations

Exmample: Agreement

Missed generalisation:

S→ NP-Sg VP-Sg S→ NP-Pl VP-Pl

Be�er: S→ NP VP Condition: NP and VP agree in their number
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Introduction (2)

To express such generalisations, we can factorise the non-terminals:

A non-terminal is no longer atomic, but it has a structure.

�e content of the non-terminals is described via a�ributes (i.e.,

features) that can have certain values.

Such structures are called a�ribute-value structures or feature

structures. �ey are o�en represented in an a�ribute-value

matrix (AVM).

Feature structures[
cat NP

num Pl

] 
lex ihm

cat Pro

case dat

num Sg

gen m




pred give

donor Adam

theme apple

recipient Eve


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Introduction (2)

It is possible to refer to the same a�ribute value in di�erent

places (structure sharing)

Structure sharing[
cat S

]
→
[

cat NP

num 1

][
cat VP

num 1

]
(�e variable 1 always denotes the same value.)

pred give

donor 1 Adam

agent 1

theme apple

recipient Eve


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Introduction (4)

Underspeci�cation: Not all the values are always known. In-

stead of listing all the possibilities it is possible to specify only

those values that are known.

Underspeci�cation of a�ributescat N

num Sg

gen m

→ man

[
cat N

gen n

]
→ �sh

[
cat Det

num Sg

]
→ a

[
cat Det

]
→ the


cat NP

num 1

gen 2

pers 3


→
[

cat Det

num 1

]cat N

num 1

gen 2


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Introduction (5)

A�ributes do not necessarily have atomic values. �e value of

an a�ribute can be another a�ribute-value structure.

Recursive feature structurescat N

agr

[
gen n

]→ �sh

cat Det

agr

[
num Sg

]→ a

cat NP

agr 1

[
pers 3

]→ [
cat Det

agr 1

][
cat N

agr 1

]
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A�ribute-value structures as graphs (1)

A�ribute-value structures are usually formalised as directed graphs.

Two possibilities: an a�ribute-value matrix such ascat N

agr

[
gen n

]
1 can be represented as a directed graph

N

n

cat

agr

gen

2 or as a description of such a graph, that can be in principle

satis�ed by an in�nite number of graphs.

cat:N ∧ agr:gen:n

7



A�ribute-value structures as graphs (2)

In the following, we assume feature structures to be graphs (and not

expressions in a feature logic).

Feature structure

A (untyped) feature structure is a tuple 〈V ,A,Val, r〉 such that

V is a set of vertices (= nodes).

A is a �nite set of partial functions a : V → V

Val is a �nite set of atomic values and there is a partial function

lVal : {v ∈ V | there is no a ∈ A such that a(v) is de�ned, i.e.,

there is no outgoing edge for v} → Val

r ∈ V is the unique root of the feature structure, i.e., there is

exactly one node in V (which is r) such that there is no v ∈
V , a ∈ A with a(v) = r .

Some (non-standard) de�nitions of feature structures do not assume

the existence of a unique root.
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A�ribute-value structures as graphs (3)

Feature structures as graphs

possible feature structure:

S NP

VP

sg
cat

subj

pred

cat

agr

cat

num

ill-formed feature structures:

S NP

cat cat

(a�ributes have to be functional)

NP

cat cat

(there must be a unique root node)

SS

cat
(only leaves are labeled with atomic values)
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A�ribute-value structures as graphs (4)

A�ribute-value graphs are not always trees since we can have more

than one incoming edge per node.

Structure Sharing

S

NP

VP

sg

cat

subj

pred

cat

agr

agr

cat

num
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A�ribute-value structures as graphs (4)

In the corresponding AVM, the token identity of two a�ribute values

is expressed by using the same variable 1 , 2 , etc. for them.

�ese variables stand for unique nodes in the corresponding

a�ribute-value graph.

Structure Sharing

S

NP

VP

sg

cat

subj

pred

cat

agr

agr

cat

num 

cat S

subj

cat NP

agr 1

[
num sg

]
pred

[
cat VP

agr 1

]


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A�ribute-value structures as graphs (5)

If structure sharing is involved, we can have more than one AVM for

the same graph:

Structure Sharing continued

cat S

subj

cat NP

agr 1

[
num sg

]
pred

[
cat VP

agr 1

]





cat S

subj

[
cat NP

agr 2

]

pred

cat VP

agr 2

[
num sg

]


S

NP

VP

sg

cat

subj

pred

cat

agr

agr

cat

num
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Subsumption and uni�cation (1)

Subsumption: Relation on feature structures: S1 subsumes S2

(S1 v S2), if S2 contains (at least) all the information from S1.

Example

Subsumption

Ex. S1:

cat V

agr

[
num Sg

] S2:


orth laughs

cat V

agr

[
pers 3

num Sg

]


S1 v S2

In other words: there is a homomorphism from the nodes of S1 to the

nodes of S2 that preserves edges and labels and that maps the root of

S1 to the root of S2.
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Subsumption and uni�cation (2)

Example

Subsumption S1 as a graph and its image under the homomorphism

in S2:

N

Sg

laughs

N

Sg

3

cat

agr

num

orth

cat

agr

num

pers
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Subsumption and uni�cation (3)

Subsumption

Let S1 = 〈V1,A,Val, r1〉 and S2 = 〈V2,A,Val, r2〉 be feature struc-

tures.

S1 subsumes S2, S1 v S2 if there is a function h : V1 → V2 such that

h(r1) = r2,

for all v1, v2 ∈ V1 and all a ∈ A: if a(v1) = v2, then a(h(v1)) =
h(v2), and

for all v ∈ V1 and all l ∈ Val: if lVal(v) = l, then lVal(h(v)) = l.
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Subsumption and uni�cation (3)

Subsumption: more examples

S1:


cat N

agr

[
num Sg

case acc

]
S2:


orth laughs

agr

[
pers 3

num Sg

]
S1 6v S2, S2 6v S1

S1:

[
cat N

agr 1

]
S2:


cat N

agr

[
pers 3

num Sg

]
S1 v S2
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Subsumption and uni�cation (4)

Subsumption is a partial order, so it is

1 re�exive: each structure subsumes itself S v S for all S;

2 transitive: if S1 v S2 and S2 v S3 then S1 v S3 for all S1, S2, S3;

3 asymmetric: if S1 v S2 and S2 v S1 then S1 = S2.

An empty feature structure [ ] subsumes all other feature structures.
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Subsumption and uni�cation (5)

A feature structure S is a uni�cation of S1 and S2 (S1 t S2), if S is

subsumed by both S1 and S2 and S subsumes all other feature

structures that are subsumed by both S1 and S2.cat V

agr

[
num Sg

]t cat V

agr

[
pers 3

]= 
cat V

agr

[
num Sg

pers 3

]
To make t always de�ned, we introduce a symbol ⊥ that refers to an

inconsistent feature structure that is subsumed by all feature

structures.cat NP

agr

[
num Sg

]t 
cat V

agr

[
num Sg

pers 3

]
= ⊥
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Subsumption and uni�cation (6)

Feature structures that are related by the v relation, form a la�ice:
1 v

is a partial order and for any S1, S2 the following holds:

(sup) �ere is a feature structure S, such that S1 v S and S2 v S and S
also subsumes all other feature structures that are subsumed by

both S1 and S2. S is called Supremum of {S1, S2}.

(inf) �ere is a feature structure S, such that S v S1 and S v S2 and S
is subsumed by all other structures that subsume both S1 and S2.

S is called In�mum of {S1, S2}.

From this it follows that with respect to the v the smallest element is

[ ], and the biggest element is ⊥.

1

Deutscher Terminus für la�ice: Verband.
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Further examples of la�ices

1 �e set of natural numbers with the (total) order ≤.

Supremum in this case is max, in�mum is min.

2 �e set of all subsets of some set, with the partial order ⊆. E.g.

{∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} with ⊆.

Supremum is union ∪ in this case, in�mum is intersection ∩.

3 �e set of all factors (’Teiler’) of some n (for example of 60)

with the partial order “being factor of”.

Supremum is the lowest common multiple (’kleinstes gemein-

sames Vielfaches’), in�mum the greatest common divisor

(‘größter gemeinsamer Teiler’).

4 �e set of all natural numbers, also with the partial order “be-

ing factor of”.

Supremum is the lowest common multiple, in�mum the great-

est common divisor.
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Typed feature structures (1)

�e feature structures mentioned above implicitly imply that cat is a

syntactic category and agr is responsible for the agreement. I.e., the

following feature structures should not be possible:
cat Sg

agr

[
num 3

pers V

]
[

cat

[
agr

[
pers 3

]]]

However, nothing prevents the existence of such structures so far, as

there is no generalisation de�ned for this case.

Goal: formulate restrictions of the kind “an agreement feature

structure can have only a�ributes num, pers and gen”.
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Typed feature structures (2)

So we introduce types for feature structures:

Each feature structure has a type τ .

For each type τ it is de�ned which a�ributes it has and what

are the types of the values of these a�ributes.

Types are organised in a type hierarchy, where speci�c types

are ordered under the general types.

Uni�cation operation is extended in order to take care of the

types.
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Typed feature structures (3)

Types and their possible arguments are identi�ed using the a�ribute

speci�cations for every type and the type hierarchy.

A�ribute de�nitions per types[
agr-str
agr agr

]
agr
num num
gen gen
pers pers


[
det
cat D

]nouncat N
case case


[
syncat
cat cat

]
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Typed feature structures (4)

Atomic values are also types, and they are therefore part of the

type hierarchy.

�e type hierarchy expresses partial relations “is subtype of”.

We can specify it in the form of a diagram where the nodes are

the types and we have an edge from a higher node labeled τ1

to a lower node labeled τ2 whenever τ2 is a subtype of τ1 and

there is no type in between.

�e “is subtype of” relation is re�exive, transitive and asym-

mectric, i.e., it is a partial order.

Type hierarchy

>

agrcat

DVPNPVN

case

dataccnom

pers

321

gen

nfm

num

PlSg

syncat

noun

agr-str

det
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Typed feature structures (5)

�e a�ributes for a speci�c type τ are at least the following:

all a�ributes speci�ed for τ in the per-type-a�ribute speci�ca-

tions, and

all a�ributes speci�ed for supertypes of τ .

Types

noun is a subtype of agr-structure and syncat.
Consequently, it inherits a�ribute speci�cations from itself and from

the two supertypes.[
agr-str
agr agr

] [
syncat
cat cat

] nouncat N
case case



agr
num num
gen gen
pers pers


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Typed feature structures (6)

Types

Pu�ing things together: [
agr-str
agr agr

] [
syncat
cat cat

] nouncat N
case case



agr
num num
gen gen
pers pers



noun
cat N
case case

agr


agr
num num
gen gen
pers pers




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Typed feature structures (7)

Uni�cation and subsumption has to be adapted:

�e condition in subsumption is that the image of a node of

type τ has a type that is a subtype of τ .

For uni�cation, this means that the result of unifying two

nodes of types τ1 and τ2 (i.e., mapping them to the same node

in the resulting structure) is a node of type τ where τ is the

most general subtype of both τ1 and τ2.

Types



noun
cat N
case case

agr


agr
num num
gen gen
pers pers




t


agr-str

agr


agr
num Sg
gen f
pers 3




=



noun
cat N
case case

agr


agr
num Sg
gen f
pers 3




27



Typed feature structures (8)

Further example

Type hierarchy:

>
structure

headed-structure mod-structure

case

genacc dat

syn-cat agr

n-cathead-mod-structure
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Typed feature structures (9)

Further example continued

headed-structure

head


n-cat
cat 1n
phon Bücher

agr 2

[
num pl
case case

]


agr 2

cat 1



t


mod-structure

head

syn-catcat 4

agr 3


agr 3

mod



modi�er
cat adj
phon spannender

agr 3

agrnum pl
case gen






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Typed feature structures (10)

Further example continued

Result

head-mod-structure

head


n-cat
cat 1n
phon Bücher
agr 2


agr 2

cat 1

mod



modi�er
cat adj
phon spannender

agr 2

agrnum pl
case gen






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Extensions (1)

Some linguistic theories use also sets or lists as a�ribute values.

Example.: Head-Driven Phrase Structure Grammar (HPSG) codes

syntactic trees as feature structures, where all the daughters of the

node are provided as a value of the respective a�ribute in form of a

list.

set a�ributes
phrase

dtrs 〈

[
cat PRO

orth I

]
,


cat VP

dtrs 〈

[
cat V

orth love

]
,

[
cat NP

orth New York

]
〉

〉

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Extensions (2)

Some systems work directly with feature structures as graphs.

Some use descriptions of features structures.

Advantage of descriptions: variable expressive power depending on

the used Logic (of course in connection with the complexity). Some

useful operations:

1 Disjunction: case = acc ∨ case = dat

2 Negation: ¬(case = nom)

3 Non-equality of paths: subj [case] 6= obj [case]
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