
Parsing

Introduction

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Summer 2021

1 / 24

Table of contents

1 Introduction

2 Languages

3 Grammars

4 Grammar Formalisms

5 Parsing and Automata

6 �e Chomsky Hierarchy

2

Introduction

Parsing means performing an automatic syntactic analysis.

Two types of syntactic structures are used for natural languages:

1 Constituent structure

2 Dependency structure

See for instance the Stanford Parser, that gives both types of

structures:

http://nlp.stanford.edu:8080/parser/index.jsp

3

Introduction

Constituent structure

every word is a constituent

several constituents can form a new constituent

each constituent has a syntactic category

the structure is usually tree-shaped

o�entimes only continuous constituents

S

VP

NP

NN

girl

DT

the

VBD

saw

NP

NN

man

DT

the

4

Introduction

Dependency structure

every word is a node in the structure

there is one additional node, root

words are linked via directed labeled edges (dependencies)

the structure is usually tree-shaped

o�entimes only projective dependencies

root the
man saw

the girl

subj

dobj

det
det

root

Constituency parsing is mostly grammar-based while dependency

parsing is mostly grammar-less.

�is course is concerned with constituency parsing.

5

Introduction

�ere are di�erent types of constituency structures, depending on

your linguistic theory.

Treebank formats: Penn Treebank Style

SBARQ

SQ

VP

S

VP

VP

NP

-NONE-

T-1

VB

eat

TO

to

NP-SBJ

-NONE-

*-2

V

want

NP

PRP

you

VBZ

do

WHNP-1

WP

what

6

Introduction

Treebank formats: RRGbank style

CLAUSE

CORE

NUCwh[nucid 1]

V

eat

CLM

to

CORE

NUC

V

want

NP

PRO

you

OPtns

do

PrCS

NPwh[predid 1]

PROwh

what

7

Introduction

Treebank formats: Negra/Tiger style

S

VP

VP

what do
you want to eat

WP VBZ PRP V TO VB

WHNP NP

In this course, we are not concerned with linguistic theory.

8

Languages (1)

Examples of languages one might want to parse:

Languages

natural languages such as, e.g., German, English, French, . . .

programming languages such as, e.g., the set of all correct

Java programs, . . .

“biological” languages such as, e.g., the set of possible DNA

sequences in a certain environment, . . .

formal languages such as, e.g., the language containing all

sequences ab, aabb, aaabbb, aaaabbbb,

9

Languages (2)

Alphabet, languages

An alphabet is a nonempty �nite set X .

A string x1 . . . xn with n ≥ 1 and xi ∈ X for 1 ≤ i ≤ n is called

a nonempty word on the alphabet X . X+
is de�ned as the set

of all nonempty words on X .

A new element ε /∈ X+
is added: X∗ := X+ ∪ {ε}. For each

w ∈ X∗ concatenation of w and ε is de�ned as follows: wε :=
εw := w. ε is called the empty word, and each w ∈ X∗ is
called a word on X .

A set L is called a language i� there is an alphabet X such that

L ⊆ X∗.

10

Grammars (1)

Languages are described by grammars. We will concentrate on

generative grammars (sometimes also called rewriting
grammars).

Idea: you have

a start symbol (o�en S)

and productions (rewriting rules) that tell you how to replace

symbols with other symbols. (e.g., S→ NP VP)

11

Grammars (2)

Grammar Gtelescope

Productions:

S→ NP VP NP→ D N N→ N PP

VP→ VP PP VP→ V NP PP→ P NP

N→ man N→ girl N→ telescope P→ with

D→ the NP→ John NP→Mary V→ saw

In each derivation step α⇒ γ, the le�hand side symbol of a

production is replaced with the righthand side.

Derivation in Gtelescope

S⇒ NP VP⇒ D N VP⇒ the N VP⇒ the girl VP⇒ the girl V NP

⇒ the girl saw NP⇒ the girl saw John

12

Grammars (3)

�e language generated by a grammar is the set of terminal strings

one can derive from the start symbol.

Language of Gtelescope

Sentences one can generate with Gtelescope:

(1) John saw Mary

(2) John saw the girl

(3) the man with the telescope saw John

(4) John saw the girl with the telescope

. . .

13

Grammar Formalisms (1)

A grammar formalism de�nes the form of rules and combination

operations allowed in a grammar.

Type 0 grammar

A type 0 grammar (or unrestricted grammar) G is a tuple

〈N , T , P, S〉 with

N and T disjoint alphabets, the nonterminals and terminals,

S ∈ N the start symbol, and

P a set of productions of the form α→ β with

α ∈ (N ∪ T)+, β ∈ (N ∪ T)∗.

14

Grammar Formalisms (2)

Derivation

Let G = 〈N , T , P, S〉 be a type 0 grammar. �e (string) language L(G)
of G is the set {w ∈ T∗ | S ∗⇒ w} where

for w,w′ ∈ (N ∪T)∗: w ⇒ w′ i� there is a α→ β ∈ P and there

are v, u ∈ (N ∪ T)∗ such that w = vαu and w′ = vβu.
∗⇒ is the re�exive transitive closure of⇒:

w 0⇒ w for all w ∈ (N ∪ T)∗, and
for all w,w′ ∈ (N ∪ T)∗: w n⇒ w′ i� there is a v such that w ⇒ v
and v n−1⇒ w′.
for all w,w′ ∈ (N ∪ T)∗: w ∗⇒ w′ i� there is a i ∈ IN such that

w i⇒ w′.

A language is called a type 0 language i� it is generated by a type 0

grammar.

15

Grammar Formalisms (3)

Type 1 grammar

A type 0 grammar is called context-sensitive (or of type 1) if for
all productions α→ β, |α| ≤ |β| holds. �e only exception is S → ε
which is allowed if S does not appear in any righthand side.

Example of a type 1 grammar

N = {S, C}, T = {a, b, c}

Productions:

S→ abc S→ aabCbc abC→ aabCbC

Cb→ bC Cc→ cc

�is grammar generates {anbncn | n ≥ 1}.

16

Grammar Formalisms (4)

Type 2 grammar

A type 0 grammar is called context-free (or of type 2) if for all
productions α→ β, α ∈ N .

Example of a type 2 grammar

N = {S, T}, T = {a, b, c, d}

Productions:

S→ aSb S→ aTb T→ ccTdd T→ ε

�is grammar generates the language {anc2md2mbn | n ≥ 1,m ≥ 0}.

17

Grammar Formalisms (5)

Type 3 grammar

A type 0 grammar is called regular (or of type 3) if for all produc-
tions α→ β, α ∈ N and β ∈ T∗ or β = β′X with β′ ∈ T∗, X ∈ N .

Example of a type 3 grammar

N = {S, A, B, C}, T = {a, b, c}

Productions:

S→ aaS S→ B S→ C B→ bB B→ b C→ cc

�is grammar generates the language denotated by (aa)∗(b+|cc).

�e type 1/2/3 languages are the languages generated by the

corresponding grammars.

18

Parsing and Automata (1)

A parser is a device that accepts a word w and a grammar G as input

and that

1 decides whether w is in the language generated by the gram-

mar and

2 if so, it provides a syntactic analysis for w or, if w is ambiguous,

either a set of analyses, o�entimes represented in a compact

way as a derivation forest, or the k best analyses.

A device that does only the �rst part of the task is called a

recognizer.

19

Parsing and Automata (2)

Example for parsing:

Input: “the man saw the girl”.

Output: S

VP

NP

N

girl

D

the

V

saw

NP

N

man

D

the

Input: “the man saw saw the girl”. Output: no.

20

Parsing and Automata (3)

A parser for grammars such as Gtelescope could for example work as

follows:

1 Start from the terminal symbols.

2 Apply productions in reverse order thereby combining already

recognized parts into new parts.

3 Success if an S can be found that spans the whole w.

21

Parsing and Automata (4)

Automata are devices that accept a language. �ey are recognizers.

An automaton has

a set of states, containing an initial state and �nal states,

a tape with the input string, and

a �nite control.

�e automaton starts in the initial state. It reads the input string on

the tape while changing states. If it ends up in a �nal state a�er

having consumed the whole input, the word is accepted.

O�entimes for a given grammar, an automaton can be constructed

that accepts the string language of the grammar.

22

�e Chomsky Hierarchy

�e hierarchy of the type 0, 1, 2 and 3 languages is called the

Chomsky Hierarchy.

Chomsky Hierarchy

class grammar automaton others

type 3 regular grammar FSA reg. expr.

type 2 CFG PDA

type 1 CSG LBA

type 0 unrestricted grammars Turing machine

In this course, we are concerned with CFGs.

23

Grune, D. and Jacobs, C. (2008). Parsing Techniques. A Practical Guide.
Monographs in Computer Science. Springer. Second Edition.

A textbook covering almost all the algorithms treated in this course.

Hopcro�, J. E. and Ullman, J. D. (1979). Introduction to Automata �eory,
Languages and Computation. Addison Wesley.

Original edition of one of the best textbooks on formal language and

automata theory.

Hopcro�, J. E. and Ullman, J. D. (1994). Einführung in die Automatentheorie,
Formale Sprachen und Komplexitätstheorie. Addison Wesley, 3. edition.

Its German translation.

Kallmeyer, L. (2010). Parsing Beyond Context-Free Grammars. Cognitive
Technologies. Springer, Heidelberg.

Chapter 3 introduces to parsing as deduction and discusses some

properties of parsing algorithms.

24

	Introduction
	Languages
	Grammars
	Grammar Formalisms
	Parsing and Automata
	The Chomsky Hierarchy
	References

