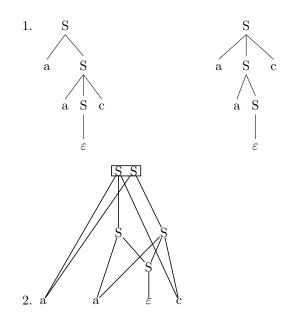
Parsing

Homework 10 (Tomita), due 29 June 2020

Laura Kallmeyer

SS 2020, Heinrich-Heine-Universität Düsseldorf

Question 1 (Tomita graph-based stack)


Consider the CFG $\langle N, T, P, S \rangle$ with $N = \{S\}, T = \{a, c\}, \text{ start symbol } S, \text{ and productions } 1.S \rightarrow aSc, 2.S \rightarrow aS, 3.S \rightarrow \varepsilon.$ The LR(1) parse table is as follows:

	a	c	\$	S
0	s2		r3	1
1			acc	
\mathcal{Z}	s3	r3	r3	4
3	s3	r3	r3	6
4		s5	r2	
5			r1	
6		s7, r2	r2	
$\tilde{7}$		r1	r1	

- 1. Give the two parse trees for aac with this grammar.
- 2. Give the graph corresponding to the compact parse forest representation for the input aac with this grammar.
- 3. Give the trace of the Tomita-parse for aac (with all intermediate stack graphs and all analyses), using the compact parse forest representation.

Note that the grammar has a ε -production. Reducing with this is possible (according to the parse table) when being in state 3 or 4 and havign c or \$ as next input symbol. This reduce means creating an S node with a single daughter, labeled ε (notation $S(\varepsilon)$) and pushing the pointer to this S-node onto the stack.

Solution:

	Stack	analysis
	0 s2	
3.	0 - 1 - 2 s3	1: a
	0 - 1 - 2 - 2 - 3 r3	2: a
	0 - 1 - 2 - 2 - 3 - 3 - 6 s7, r2	$\exists: S(\varepsilon)$
	0 - 1 - 2 - 2 - 3 - 3 - 6 s7	
	4 - 4 s5	4: S(2,3)
	0 - 1 - 2 - 2 - 3 - 3 - 6 - 5 - 7 r1 $4 - 4 - 5 - 5 r1$	
	4 - 5 - 5 r1	5: c
	$0 - 1 - 2 - 6 - 4 r^2$	
	$0 - 1 - 2 - 6 - 4 r^2$ $4 - 4 - 5 - 5 r^1$	6: S(2,3,5)
	$0 \underbrace{1}_{2} \underbrace{-6}_{4} r2$	
	7—1 acc	7: S(1, 4, 5)
	0 - 9 - 1 acc	8: S(1,6), 9:[7,8]